Skip to main content

Breast Elastography

  • Chapter
  • First Online:
  • 925 Accesses

Abstract

The recent expansion of elastography amongst all the manufacturers has led to a rocketing increase in the number of examinations whose results are rather disappointing and very uneven. Some manufacturers (the pioneers) have a great experience, and they perfectly master this technique which was long frowned upon. There is an obvious discrepancy in the results which is partly linked to the various types of equipment available to the users, but there is also great unevenness due to the fact that this technique is very much operator dependent without training. A minimum expertise and training should allow the limitation of disparity in the results obtained and tone down that dependence. To recall the basic principles of elastography and make clear once again the technical recommendations for the carrying out of the examination has seemed more pertinent and essential in order to ensure the good use of this remarkable technique which has become an unavoidable part of the echographic examination of breasts. Part of the recent bibliography presented here bears witness to the good clinical results of this technique, and we have no need to repeat and reproduce them.

This is a preview of subscription content, log in via an institution.

References

  1. Yamakawa M, Shiina T. Strain estimation using the extended combined autocorrelation method. Jpn J Appl Phys. 2001;40:3872–6.

    Article  CAS  Google Scholar 

  2. Havre RF, Elde E, Gilja OH, Odegaard S, Eide GE, Matre K, Nesje LB. Freehand real-time elastography: impact of scanning parameters on image quality and in vitro intra- and interobserver validations. Ultrasound Med Biol. 2008;34:1638–50.

    Article  PubMed  Google Scholar 

  3. Toh A, Ueno E, Tohno E, Kamma H, Takahashi H, Shiina T, Yamakawa M, et al. Breast disease: clinical application of US elastography for diagnosis. Radiology. 2006;239:341–50.

    Article  Google Scholar 

  4. Schwab F, Redling K, Siebert M, Schötzau A, Schoenenberger CA, Zanetti-Dällenbach R. Inter- and intra-observer agreement in ultrasound BI-RADS classification and real-time elastography Tsukuba score assessment of breast lesions. Ultrasound Med Biol. 2016;42(11):2622–9.

    Article  PubMed  Google Scholar 

  5. Cho N, Moon WK, Chang JM, Kim SJ, Lyou CY, Choi HY. Aliasing artifact depicted on ultrasound (US)-elastography for breast cystic lesions mimicking solid masses. Acta Radiol. 2011;52(1):3–7.

    Article  PubMed  Google Scholar 

  6. Thomas A, Degenhardt F, Farrokh A, Wojcinski S, Slowinski T, Fischer T. Significant differentiation of focal breast lesions: calculation of strain ratio in breast sonoelastography. Acad Radiol. 2010;17(5):558–63.

    Article  PubMed  Google Scholar 

  7. Zhi H, Xiao XY, Yang HY, Ou B, Wen YL, Luo BM. Ultrasonic elastography in breast cancer diagnosis: strain ratio vs 5-point scale. Acad Radiol. 2010;17(10):1227–33.

    Article  PubMed  Google Scholar 

  8. Baba H, Waki K, Murayama N, Iimura T, Miyauchi Y. Development of the FLR assistance for the strain ratio measurement in breast elastography. Medix. 2013;58:42–5.

    Google Scholar 

  9. Ueno E, Tohno E, Morishima I, Umemoto T, Waki K. A preliminary prospective study to compare the diagnostic performance of assist strain ratio versus manual strain ratio. J Med Ultrason (2001). 2015;42(4):521–31.

    Article  Google Scholar 

  10. Youk JH, Son EJ, Gweon HM, Kim H, Park YJ, Kim JA. Comparison of strain and shear wave elastography for the differentiation of benign from malignant breast lesions, combined with B-mode ultrasonography: qualitative and quantitative assessments. Ultrasound Med Biol. 2014;40(10):2336–44.

    Article  PubMed  Google Scholar 

  11. Xiao Y, Yu Y, Niu L, Qian M, Deng Z, Qiu W, Zheng H. Quantitative evaluation of peripheral tissue elasticity for ultrasound-detected breast lesions. Clin Radiol. 2016;71(9):896–904.

    Article  CAS  PubMed  Google Scholar 

  12. Jing H, Cheng W, Li ZY, Ying L, Wang QC, Wu T, Tian JW. Early evaluation of relative changes in tumor stiffness by shear wave elastography predicts the response to neoadjuvant chemotherapy in patients with breast cancer. J Ultrasound Med. 2016;35(8):1619–27.

    Article  PubMed  Google Scholar 

  13. Evans A, Purdie CA, Jordan L, Macaskill EJ, Flynn J, Vinnicombe S. Stiffness at shear-wave elastography and patient presentation predicts upgrade at surgery following an ultrasound-guided core biopsy diagnosis of ductal carcinoma in situ. Clin Radiol. 2016. pii: S0009-9260(16)30267-7. https://doi.org/10.1016/j.crad.2016.07.004.

  14. Paczkowska K, Rzymski P, Kubasik M, Opala T. Sonoelastography in the evaluation of capsule formation after breast augmentation - preliminary results from a follow-up study. Arch Med Sci. 2016;12(4):793–8.

    Article  PubMed  Google Scholar 

  15. Giannotti E, Vinnicombe S, Thomson K, McLean D, Purdie C, Jordan L, Evans A. Shear-wave elastography and greyscale assessment of palpable probably benign masses: is biopsy always required? Br J Radiol. 2016;89(1062):20150865.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cha YJ, Youk JH, Kim BG, Jung WH, Cho NH. Lymphangiogenesis in breast cancer correlates with matrix stiffness on shear-wave elastography. Yonsei Med J. 2016;57(3):599–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Evans A, Sim YT, Thomson K, Jordan L, Purdie C, Vinnicombe SJ. Shear wave elastography of breast cancer: sensitivity according to histological type in a large cohort. Breast. 2016;26:115–8.

    Article  PubMed  Google Scholar 

  18. Liu B, Zheng Y, Huang G, Lin M, Shan Q, Lu Y, Tian W, Xie X. Breast lesions: quantitative diagnosis using ultrasound shear wave elastography - a systematic review and meta-analysis. Ultrasound Med Biol. 2016;42(4):835–47.

    Article  PubMed  Google Scholar 

  19. Chamming’s F, Le-Frère-Belda MA, Latorre-Ossa H, Fitoussi V, Redheuil A, Assayag F, Pidial L, Gennisson JL, Tanter M, Cuénod CA, Fournier LS. Supersonic shear wave elastography of response to anti-cancer therapy in a xenograft tumor model. Ultrasound Med Biol. 2016;42(4):924–30.

    Article  PubMed  Google Scholar 

  20. Bae JS, Chang JM, Lee SH, Shin SU, Moon WK. Prediction of invasive breast cancer using shear-wave elastography in patients with biopsy-confirmed ductal carcinoma in situ. Eur Radiol. 2017;27(1):7–15.

    Article  PubMed  Google Scholar 

  21. Džoić Dominković M, Ivanac G, Kelava T, Brkljačić B. Elastographic features of triple negative breast cancers. Eur Radiol. 2016;26(4):1090–7.

    Article  PubMed  Google Scholar 

  22. Ng WL, Rahmat K, Fadzli F, Rozalli FI, Mohd-Shah MN, Chandran PA, Westerhout CJ, Vijayananthan A, Abdul Aziz YF. Shearwave elastography increases diagnostic accuracy in characterization of breast lesions. Medicine (Baltimore). 2016;95(12):e3146.

    Article  Google Scholar 

  23. Lee S, Jung Y, Bae Y. Clinical application of a color map pattern on shear-wave elastography for invasive breast cancer. Surg Oncol. 2016;25(1):44–8.

    Article  CAS  PubMed  Google Scholar 

  24. Kilic F, Velidedeoglu M, Ozturk T, Kandemirli SG, Dikici AS, Er ME, Aydogan F, Kantarci F, Yilmaz MH. Ex vivo assessment of sentinel lymph nodes in breast cancer using shear wave elastography. J Ultrasound Med. 2016;35(2):271–7.

    Article  PubMed  Google Scholar 

  25. Choi JS, Han BK, Ko EY, Ko ES, Shin JH, Kim GR. Additional diagnostic value of shear-wave elastography and color Doppler US for evaluation of breast non-mass lesions detected at B-mode US. Eur Radiol. 2016;26(10):3542–9.

    Article  PubMed  Google Scholar 

  26. Skerl K, Vinnicombe S, Thomson K, Mclean D, Giannotti E, Evans A. Anisotropy of solid breast lesions in 2D shear wave elastography is an indicator of malignancy. Acad Radiol. 2016;23(1):53–61.

    Article  PubMed  Google Scholar 

  27. Elseedawy M, Whelehan P, Vinnicombe S, Thomson K, Evans A. Factors influencing the stiffness of fibroadenomas at shear wave elastography. Clin Radiol. 2016;71(1):92–5.

    Article  CAS  PubMed  Google Scholar 

  28. Bernal M, Chammings F, Couade M, Bercoff J, Tanter M, Gennisson JL. In vivo quantification of the nonlinear shear modulus in breast lesions: feasibility study. IEEE Trans Ultrason Ferroelectr Freq Control. 2016;63(1):101–9.

    Article  PubMed  Google Scholar 

References: SWE

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Amy M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amy, D., Bercoff, J., Bibby, E. (2018). Breast Elastography. In: Amy, D. (eds) Lobar Approach to Breast Ultrasound. Springer, Cham. https://doi.org/10.1007/978-3-319-61681-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61681-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61680-3

  • Online ISBN: 978-3-319-61681-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics