Advertisement

Siberian Sturgeon Sperm Cryoconservation

  • Andrzej Ciereszko
  • Martin Pšenička
Chapter

Abstract

Sperm cryopreservation can potentially be used as a management tool for better organisation of spawning and improvements of breeding programs, providing a security strategy against decline in natural populations and incorporating of genes from wild fish into hatchery populations. Two extenders are presently available to insure high-quality cryopreserved Siberian sturgeon semen: (1) an extender consisting of 30 mM Tris, 23.4 mM sucrose, 0.25 mM KCl, 10% methanol and pH 8.0 and (2) a simplified extender consisting of just 0.1 M glucose and 15% methanol. Cryopreservation protocols secure good level of post-thaw motility (20–60% vs. 40–80% for fresh semen). A high variability in usefulness of semen for cryopreservation is a main problem in successful freezing. As such, it is difficult to predict a priori which semen samples would be successfully cryopreserved. Sperm characteristics, such as motility, have only limited usefulness, and more research towards identification of reliable markers of cryopreservation is needed. At present, implementation of cryopreserved semen into hatchery practices and breeding programs is limited despite the fact that this challenging task can greatly improve breeding programs for cultured Siberian sturgeon and help to protect diversity of wild populations. So far, the main application for cryopreservation of sturgeon semen has been for hybridization.

Keywords

Spermatozoa Sperm motility Cryopreservation Cryoinjuries 

Notes

Acknowledgments

The study was financially supported by COST Office (Food and Agriculture COST Action FA1205: AQUAGAMETE), the Ministry of Education, Youth and Sports of the Czech Republic—projects “CENAKVA” (No. CZ.1.05/2.1.00/01.0024) and “CENAKVA II” (No. LO1205 under the NPU I program)—and by the Czech Science Foundation (No. P502/13/26952S) and the National Science Centre granted for research project (No. 2011/01/D/NZ9/03738) and funds appropriated to Institute of Animal Reproduction and Food Research of Polish Academy of Sciences. Authors also express thanks to prof. MSc. William L. Shelton, Ph.D. for English corrections.

References

  1. Alavi SMH, Hatef A, Pšenička M, Kašpar V, Boryshpolets S, Dzyuba B, Cosson J, Bondarenko V, Rodina M, Gela D, Linhart O (2012) Sperm biology and control of reproduction in sturgeon: (II) sperm morphology, acrosome reaction, motility and cryopreservation. Rev Fish Biol Fish 22:861–886CrossRefGoogle Scholar
  2. Billard R, Lecointre G (2001) Biology and conservation of sturgeon and paddlefish. Rev Fish Biol Fish 10:355–392CrossRefGoogle Scholar
  3. Billard R, Cosson J, Noveiri SB, Pourkazemi M (2004) Cryopreservation and short-term storage of sturgeon sperm, a review. Aquaculture 236:1–9CrossRefGoogle Scholar
  4. Brown GG, Mims SD (1999) Cryopreservation of paddlefish Polyodon spathula milt. J World Aquacult Soc 30:245–249CrossRefGoogle Scholar
  5. Ciereszko A, Toth GP, Christ SA, Dabrowski K (1996) Effect of cryopreservation and theophylline on motility characteristics of lake sturgeon (Acipenser fulvescens) spermatozoa. Theriogenology 45:665–672CrossRefGoogle Scholar
  6. Cloud JG, Miller W, Levanduski MJ (1990) Cryopreservation of sperm as a means to store salmonid germ plasm and to transfer genes from wild fish to hatchery populations. Prog Fish Cult 52:51–53CrossRefGoogle Scholar
  7. Dzyuba B, Boryshpolets S, Shaliutina A, Rodina M, Yamaner G, Gela D, Dzyuba V, Linhart O (2012) Spermatozoa motility, cryoresistance, and fertilizing ability in sterlet Acipenser ruthenus during sequential stripping. Aquaculture 356:272–278CrossRefGoogle Scholar
  8. Glogowski J, Kolman R, Szczepkowski M, Horváth A, Urbányi B, Sieczyński P, Rzemieniecki A, Domagała J, Demianowicz W, Kowalski R, Ciereszko A (2002) Fertilization rate of Siberian sturgeon (Acipenser baeri, Brandt) milt cryopreserved with methanol. Aquaculture 211:367–373CrossRefGoogle Scholar
  9. Horváth Á, Urbányi, B (2000) Cryopreservation of sterlet (Acipenser ruthenus) sperm. In: Norberg B, Kjesbu OS, Taranger GL, Andersson E, Stefansson SO (eds) Proceedings of 6th International Symposium on Reproductive Physiology of Fish, Bergen, Norway, 4–9 July, 1999, p 441Google Scholar
  10. Horváth Á, Wayman WR, Urbányi B, Ware KM, Dean JC, Tiersch TR (2005) The relationship of the cryoprotectants methanol and dimethyl sulfoxide and hyperosmotic extenders on sperm cryopreservation of two North American sturgeon species. Aquaculture 247:243CrossRefGoogle Scholar
  11. Horvath A, Urbanyi B, Mims SD, Bean WB, Gomelsky B, Tiersch TR (2006) Improved cryopreservation of sperm of paddlefish (Polyodon spathula). J World Aquacult Soc 37:356–362CrossRefGoogle Scholar
  12. Horvath A, Urbanyi B, Mims SD (2009) Cryopreservation of sperm from species of the order Acipenseriformes. In: Cabrita E, Robles V, Herraez P (eds) Methods in reproductive aquaculture, marine and freshwater species. Section V. Boca Raton, CRC Press, Taylor & Francis Group, pp 409–415Google Scholar
  13. Horvath A, Urbanyi B, Wang C, Onders RJ, Mims SD (2010) Cryopreservation of paddlefish sperm in 5-mL straws. J Appl Ichthyol 26:715–719CrossRefGoogle Scholar
  14. Jähnichen H, Warnecke D, Trolsch E, Kohlmann K, Bergler H, Pluta HJ (1999) Motility and fertilizing capability of cryopreserved Acipenser ruthenus L. sperm. J Appl Ichthyol 15:204–206CrossRefGoogle Scholar
  15. Judycka S, Szczepkowski M, Ciereszko A, Sarosiek B, Słowińska M, Karol H, Liszewska E, Dryl K, Demianowicz W, Dietrich GJ (2015a) Characterization of Siberian sturgeon (Acipenser baerii Brandt) sperm obtained out of season. J Appl Ichthyol 31(S1):34–40CrossRefGoogle Scholar
  16. Judycka S, Szczepkowski M, Ciereszko A, Dietrich GJ (2015b) New extender for cryopreservation of Siberian sturgeon (Acipenser baerii) semen. Cryobiology 70:184–189CrossRefGoogle Scholar
  17. Kopeika EE, Williot P, Goncharov BE (2000) Cryopreservation of Atlantic sturgeon Acipenser sturio L., 1758 sperm: first results and associated problems. Bol Inst Esp Oceanogr 16:167–173Google Scholar
  18. Leung LK-P (1991) Principles of biological cryopreservation. In: Jamieson BGM (ed) Fish evolution and systematics: evidence from spermatozoa. Cambridge University Press, Cambridge, pp 231–244Google Scholar
  19. Linhart O, Mims SD, Gomelsky B, Cvetkova LI, Cosson J, Rodina M, Horvath A, Urbanyi B (2006) Effect of cryoprotectants and male on motility parameters and fertilization rate in paddlefish (Polyodon spathula) frozen-thawed spermatozoa. J Appl Ichthyol 22:389–394CrossRefGoogle Scholar
  20. Martínez-Páramo S, Pérez-Cerezales S, Gómez-Romano F, Blanco G, Sanchez JA, Herraez MP (2009) Cryobanking as tool for conservation of biodiversity: effect of brown trout sperm cryopreservation on the male genetic potential. Theriogenology 71:594–604CrossRefGoogle Scholar
  21. Mazur P, Leibo SP, Seidel GE (2008) Cryopreservation of the germplasm of animals used in biological and medical research: importance, impact, status, and future directions. Biol Reprod 78:2–12CrossRefGoogle Scholar
  22. Pšenička M, Dietrich GJ, Wojtczak M, Nynca J, Rodina M, Linhart O, Cosson J, Ciereszko A (2008) Acrosome staining and motility characteristics of sterlet spermatozoa after cryopreservation with use of methanol and DMSO. Cryobiology 56:251–253CrossRefGoogle Scholar
  23. Robles V, Cabrita E, Herraez MP (2009) Germplasm cryobanking in zebrafish and other aquarium model species. Zebrafish 6:281–293CrossRefGoogle Scholar
  24. Rochard E., Williot P., Castelnaud G. et Lepage M., 1991. Eléments de systématique et de biologie des populations sauvages d’esturgeons. In: Acipenser, P. Williot (ed) Cemagref Publication, Antony, pp 475-507Google Scholar
  25. Sarosiek B, Ciereszko A, Rzemieniecki A, Domagała J, Glogowski J (2004) The influence of semen cryopreservation on the release of some enzymes from Siberian sturgeon (Acipenser baerii) and sterlet (Acipenser ruthenus) spermatozoa. Arch Pol Fish 12:13–21Google Scholar
  26. Shaliutina A, Dzyuba B, Hulak M, Boryshpolets S, Li P, Linhart O (2012) Evaluation of spermiation indices with multiple sperm collections in endangered sterlet (Acipenser ruthenus). Reprod Domest Anim 47:479–484CrossRefGoogle Scholar
  27. Shaliutina A, Hulak M, Li P, Sulc M, Dzyuba B, Linhart O (2013) Comparison of protein fractions in seminal plasma from multiple sperm collections in sterlet (Acipenser ruthenus). Reprod Domest Anim 48:156–159CrossRefGoogle Scholar
  28. Sieczyński P, Cejko BI, Grygoruk C, Glogowski J (2015) Cryopreservation of Siberian sturgeon (Acipenser baerii, Brandt, 1869) and sterlet (Acipenser ruthenus, Linnaeus, 1758) semen and its influence on sperm motility parameters assessed using a computer-assisted sperm analysis (CASA) system. J Appl Ichthyol 31(S1):99–103CrossRefGoogle Scholar
  29. Suquet M, Dreanno C, Petton B, Normant Y, Omnes MH, Billard R (1998) Long-term effects of the cryopreservation of turbot (Psetta maxima) spermatozoa. Aquat Living Resour 11:45–48CrossRefGoogle Scholar
  30. Tiersch TR (2011) Introduction to the second edition. In: Tiersch TR, Green CC (eds) Cryopreservation in aquatic species, 2nd edn. World Aquaculture Society, Baton Rouge, pp 1–17Google Scholar
  31. Tsvetkova LI, Cosson J, Linhart O, Billard R (1996) Motility and fertilizing capacity of fresh and frozen-thawed spermatozoa in sturgeons Acipenser baeri and A. ruthenus. J Appl Ichthyol 12:107–112CrossRefGoogle Scholar
  32. Urbanyi B, Horvath A, Kovacs B (2004) Successful hybridization of Acipenser species using cryopreserved sperm. Aquac Int 12:47–56CrossRefGoogle Scholar
  33. Williot P, Kopeika EF, Goncharov BF (2000) Influence of testis state, temperature and delay in semen collection on spermatozoa motility in the cultured Siberian sturgeon (Acipenser baeri Brandt). Aquaculture 189:53–61CrossRefGoogle Scholar
  34. Williot P, Rouault T, Rochard E, Castelnaud G, Lepage M, Gonthier P, Elie P (2004) French attempts to protect and restore Acipenser sturio in the Gironde: status and perspectives, the research point of view. In: Gessner J, Ritterhoff J (eds) Species differentiation and population identification in the sturgeons Acipenser sturio L. and Acipenser oxyrinchus Mitchill, vol 101. Bundesmat für Naturschutz, Bonn, pp 83–89Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Animal Reproduction and Food Research, Polish Academy of SciencesOlsztynPoland
  2. 2.Faculty of Fisheries and Protection of Waters, Laboratory of Germ Cells, Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of HydrocenosesUniversity of South Bohemia in Ceske BudejoviceVodnanyCzech Republic

Personalised recommendations