Advertisement

Welfare in the Cultured Siberian Sturgeon, Acipenser baerii Brandt: State of the Art

  • Patrick Williot
  • Mikhail Chebanov
  • Guy Nonnotte
Chapter

Abstract

The chapter aims at synthesising both the knowledge and the practices that are sturgeon welfare related. This allowed the authors to outline some main lines that should be investigated to improve the welfare of farmed sturgeon with a focus on the Siberian sturgeon. Thus, in the first part, the general principles of welfare are recalled (the so-called Five Freedoms) illustrated by a few sturgeon-related examples. As welfare might be wrongly restricted to pain perception of animals (sturgeon at present), a very brief synthetic knowledge of neuroanatomy with available data in sturgeon is given. The chapter is then focused on the anaesthetics on fish with a peculiar extension on sturgeon. The chapter also devoted to the external signs that can be used to detect painful situation. Available non-invasive methods as well as the characteristics of the environment that may impact the fish (including their physiology) are presented. A brief overview of stunning-slaughtering methods is listed. Finally, a synthetic overview of the available welfare-related tools for sturgeons is provided. As an end, some future directions to be investigated are given.

Keywords

Siberian sturgeon Welfare Anaesthetics Non-invasive methods Behaviour Environmental factors Physiology Management Stunning Slaughtering 

References

  1. Ait-Fdil M (1986) Mise en évidence et propriétés des ATPases membranaires dans la branchie, les érythrocytes et le rein d’un chondrostéen, l’esturgeon sibérien, A. baerii. Thèse Université Bordeaux I no 2157. 60pGoogle Scholar
  2. Akbulut B, Çakmak E, Ozel OT et al (2012) Effect of Anaesthesia with clove oil and benzocaine on feed intake in Siberian sturgeon (Acipenser baerii Brandt, 1869). Turk J Fish Aquat Sci 12:669–675CrossRefGoogle Scholar
  3. Amerio M, Ruggi C, Badini C (1999) Performance of Acipenser baerii reared at two water temperatures. J Appl Ichthyol 15:335–336CrossRefGoogle Scholar
  4. Ashley PJ (2007) Fish welfare: current issues in aquaculture. Appl Anim Behav Sci 104(3–4):199–235CrossRefGoogle Scholar
  5. Attia J, Millot S, Di-Poï C et al (2012) Demand feeding and welfare in farmed fish. Fish Physiol Biochem 38:107–118PubMedCrossRefGoogle Scholar
  6. Bagherzadeh Lakani F, Sattari M, Sharifpour I et al (2013) Effects of hypoxia and hyperoxia conditions on gill histopathology in two weight groups of beluga (Huso huso). Caspian J Environ Sci 11:77–84Google Scholar
  7. Baker DW, Matey V, Huynh KT, Wilson JM, Morgan JD, Brauner CJ (2009) Complete intracellular pH protection during extracellular pH depression is associated with hypercapnia tolerance in white sturgeon, Acipenser transmontanus. Am J Physiol 296:R1868–R1880Google Scholar
  8. Balazik MT, Langford B, Garman GC et al (2013) Comparison of MS-222 and electronarcosis as anaesthetics on cortisol levels in juvenile Atlantic sturgeon. Trans Am Fish Soc 142:1640–1643CrossRefGoogle Scholar
  9. Bennouna M (1986) Equilibre hydro-minéral du milieu intérieur et des érythrocytes chez un chondrostéen, l’esturgeon sibérien, Acipenser baerii, au cours de variations expérimentales de salinité et de température de l’environnement. Thèse Université Bordeaux I no 2148, 88pGoogle Scholar
  10. Bilio M (2007) Controlled reproduction and domestication in aquaculture—the current state of the art, Part I. Aquac Europe 32(1):5–14Google Scholar
  11. Bilio M (2008) Controlled reproduction and domestication in aquaculture—the current state of the art, part IV. Aquaculture Europe 33(2):12–24Google Scholar
  12. Blanc G (2003) Anesthésie des poisons. Cours relatifs à la formation en Expérimentation Animale. Unité Pharmacologie et Toxicologie. Ecole Nationale Vétérinaire de Nantes, France (ENVN): 26p; (available upon request)Google Scholar
  13. Boeuf G, Payan P (2001) How should salinity influence fish growth? Comp Biochem Physiol Part C 130:411–423Google Scholar
  14. Boguerouk A (2005) Domestication and breed-cultivating in aquaculture. World Aquac 36(4):27–31Google Scholar
  15. Borderías AJ, Sánchez-Alonso I (2011) First processing steps and the quality of wild and farmed fish. J Food Sci 76(1). doi:10.1111/j.1750-3841.2010.01900.xCrossRefPubMedGoogle Scholar
  16. Bronzi P, Rosenthal H (2014) Present and future sturgeon and caviar production and marketing: a global overview. J Appl Ichthyol 30:1536–1546CrossRefGoogle Scholar
  17. Bronzi P, Rosenthal H, Arlati G et al (1999) A brief overview on the status and prospects of sturgeon farming in western and Central Europe. J Appl Ichthyol 15:224–227CrossRefGoogle Scholar
  18. Brown C (2015) Fish intelligence, sentience and ethics. J Anim Cogn 18:1–17CrossRefGoogle Scholar
  19. Brun R, Nougayrede P, Chene P et al (1991) Bilan sanitaire de 2 ans d’élevage d’Acipenser baeri en piscicultures. In: Williot P (ed) Acipenser. Cemagref Publ, Antony, France, pp 429–437Google Scholar
  20. Buddington RK (1991) Ontogenic development of sturgeons: selected physiological examples. In: Williot P (ed) Acipenser. Cemagref Publ, Antony, France, pp 53–63Google Scholar
  21. Camargo J, Alonso A (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic systems: a global assessment. Environ Int 32:831–849PubMedCrossRefGoogle Scholar
  22. Carrera-Garcia E, Rochard E, Acolas ML (2016) European sturgeon (Acipenser sturio L.) young of the year performance in different rearing environments-study within a stocking program. Environ Biol Fish 99:887–901CrossRefGoogle Scholar
  23. Cech J, Doroshov S (2005) Environmental requirements, preferences and tolerance limits of North American sturgeons. In: GO LB, Beamish FW, McKidnley RS (eds) Sturgeons and paddlefish of North America. Springer, Netherlands, pp 73–86CrossRefGoogle Scholar
  24. Chandroo KP, Duncan IJH, Moccia RD (2004) Can fish suffer? Perspectives on sentience, pain, fear, and stress. Appl Anim Behav Sci 86:225–250CrossRefGoogle Scholar
  25. Chebanov MS, Galich EV (2009) Ultrasound diagnostics for sturgeon broodstock management. FSGTSR, Krasnodar, Prosveshenie-Yug, 116 ppGoogle Scholar
  26. Chebanov MS, Galich EV (2013) Sturgeon hatchery manual. FAO fisheries and aquaculture technical paper. No. 558. FAO, Ankara, 297 ppGoogle Scholar
  27. Chebanov MS, Karnaukhov GI, Galich EV et al (2002) Hatchery stock enhancement and conservation of sturgeons, with an emphasis on the Azov sea populations. J Appl Ichthyol 18:463–469CrossRefGoogle Scholar
  28. Chebanov MS, Galich EV, Chmyr YuN (2004) Rukovodstvo po rasvedeniyu i virashchivaniyu osetrovikh rib (sturgeon breeding and rearing handbook). Ministry Agriculture, “Rosinformagrotech”, Moscow, 136p (in Russsian)Google Scholar
  29. Conte FS (2004) Stress and the welfare of cultured fish. Appl Anim Behav Sci 86:205–223CrossRefGoogle Scholar
  30. Conti SG, Roux P, Fauvel C et al (2006) Acoustical monitoring of fish density, behaviour, and growth rate in a tank. Aquaculture 251:314–323CrossRefGoogle Scholar
  31. Cooke SJ, Hinch SG, Wilkelski M et al (2004) Biotelemetry: a mechanistic approach to ecology. Trends Ecol Evol 19:334–343PubMedCrossRefGoogle Scholar
  32. Dejours P (1973) Problems of control breathing in fishes. In: Bolis L, Schmidt-Nielsen K, Maddrell SHP (eds) Comparative physiology, locomotion, respiration, transport and blood. Elsevier North Holland Biochemical Press, Amsterdam, New York, pp 117–133Google Scholar
  33. Di Marco P, Petochi T, Longobardi A et al (2011) Efficacy of tricaine methanesulphonate, clove oil and medetomidine-ketamine and their side effects on the physiology of sturgeon hybrid Acipenser naccarii x Acipenser baerii. J Appl Ichthyol 27:611–617CrossRefGoogle Scholar
  34. Doroshov SI, Clark WH, Lutes PB et al (1983) Artificial propagation of the white sturgeon, Acipenser transmontanus Richardson. Aquaculture 32:93–104CrossRefGoogle Scholar
  35. Durve VS (1975) Anaesthetics in the transport of mullet seed. Aquaculture 5(1):1–25CrossRefGoogle Scholar
  36. EC-DGF (2004) European Commission. Directorate General for Fisheries. Research and Scientific Analysis (A4). “Farmed Fish and Welfare”. Wolfrom T & Lopes dos Santos M. 39pGoogle Scholar
  37. Ellis T, Berrill I, Lines J et al (2012) Mortality and fish welfare. Fish Physiol Biochem 38:189–199PubMedCrossRefGoogle Scholar
  38. FAWC (Farmed Animal Welfare Council) (1996) Report on the welfare of farmed fish. Surbiton, SurreyGoogle Scholar
  39. Feng G, Zhuang P, Zhang L (2011a) Effects of electronarcosis on haematological biochemistry of juvenile Acipenser baerii. Huazhong nongye daxue xuebao (ISSN: 1000–2421)Google Scholar
  40. Feng G, Liu J, Zhuang P, et al. (2011b) Anesthesia and recovery with clove oil in juvenile Siberian sturgeon (Acipenser baerii). 5th International Conference on Bioinformatics and Biomedical Engineering, ICBBE, Art. No. 5781404Google Scholar
  41. Feng G, Zhuang P, Zhang L et al (2011c) Effects of anaesthetics MS-222 and clove oil on blood biochemical parameters of juveniles Siberian sturgeon (Acipenser baerii). J Appl Ichthyol 27:595–599CrossRefGoogle Scholar
  42. Feng G, Zhuang P, Liu J, et al. (2011d) The efficarcy of MS-222 as an anesthetic for juvenile Siberian sturgeon (Acipenser baerii Brandt 1869). 5th International Conference on Bioinformatics and Biomedical Engineering, ICBBBE, Art. No. 5780319Google Scholar
  43. Fleming GJ, Heard DJ, Floyd RF et al (2003) Evaluation of propofol and metomidate—ketamine for short-term immobilization of gulf Mexico sturgeon (Acipenser oxyrinchus desotoi). J Zoo Wild Med 34(2):153–158CrossRefGoogle Scholar
  44. Fraser D, Duncan IJH, Edwards SA et al (2013) General principles for the welfare of animals in production systems: the underlying science and its application. Vet J 198:19–27PubMedCrossRefGoogle Scholar
  45. Freitas RHA, Negrão FAK et al (2014) Eye darkening as a reliable, easy and inexpensive indicator of stress. Zoologica 117:179–184Google Scholar
  46. FSBI (2002) Fish welfare. Briefing Paper 2, fisheries society of the British Isles, Granta Information Systems, 82A High Street, Sawston, Cambridge CB2 4H. http://www.le.ac.uk/biology/fsbi/welfare.pdf
  47. Galich EV (2000) Ekologo-morfologicheskie osobennosti i neiro-farmakologicheskoe ekspress-testirovanie molodi razlichnykh vidov osetrovykh, vyrashchenoy v basseinakh. “Osetrovye na rubezhe 21 veka” (Ecological and morphological peculiarities and neuro-pharmacological express testing of sturgeon juveniles reared in tanks. “Sturgeons at the turn of the 21st Century”). Abstracts of the international conference Astrakhan: 227–229 (In Russian)Google Scholar
  48. Gisbert E, Williot P (2002) Advances in larval rearing of Siberian sturgeon. J Fish Biol 60:1071–1092CrossRefGoogle Scholar
  49. Gomulka P, Wlasow T, Velišek J et al (2008) Effects of Eugenol and MS-222 anaesthesia on Siberian sturgeon Acipenser baerii Brandt. Acta Vet Brno 77:447–453CrossRefGoogle Scholar
  50. Govardovskii VI, Byzov AL, Zueva LV et al (1991) Spectral characteristics of photoreceptors and horizontal cells in the retina of the Siberian sturgeon Acipenser baeri brandt. Vis Res 31(12):2047–2056PubMedCrossRefGoogle Scholar
  51. Graña P, Huesa G, Anadón R et al (2012) Immunohistochemical study of the distribution of calcium binding proteins in the brain of a chondrostean (Acipenser baerii). J Comp Neurol 520:2086–2122PubMedCrossRefGoogle Scholar
  52. Hafner N, Lubecke V (2012) Non-contact Doppler radar monitoring of cardiorespiratory motion for Siberian sturgeon. 34th Annual International Conference of the IEEE EMBS. San Diego, CaliforniaGoogle Scholar
  53. Haines TA (1981) Acidic precipitation and its consequences for aquatic ecosystems: a review. Trans Am Fish Soc 110:669–707CrossRefGoogle Scholar
  54. Hamáčkova J, Kouril J, Kozak P et al (2006) Clove oil as an anaesthetic for different freshwater fish species. Bulgar J Agric Sci 12:185–194Google Scholar
  55. Hamlin HJ (2006) Nitrate toxicity in Siberian sturgeon (Acipenser baerii). Aquaculture 253:688–693CrossRefGoogle Scholar
  56. Hamlin HJ, Edwards TM, Moore BC et al (2007) Stress and its relation to endocrine function in captive female Siberian sturgeon (Acipenser baerii). Res Environ Sci 14(3):129–139Google Scholar
  57. Hargeaves JA (1998) Nitrogen biogeochemistry of aquaculture ponds. Aquaculture 166:181–212CrossRefGoogle Scholar
  58. Hasanalipour A, Eagderi S, Poorbagher H et al (2013) Effects of stocking density on blood cortisol, glucose and cholesterol levels of immature Siberian sturgeon (Acipenser baerii Brandt, 1869). Turk J Fish Aquat Sci 13:27–32CrossRefGoogle Scholar
  59. Henyey E, Kynard B, Zhuang P (2002) Use of electronarcosis to immobilize juvenile lake and shortnose sturgeons for handling and the effects on their behaviour. J Appl Ichthyol 18:502–504CrossRefGoogle Scholar
  60. Höbe H, Wood CM, Wheatly MB (1984) The mechanisms of acid-base regulation and ionoregulation in the freshwater rainbow trout during environmental hyperoxia and subsequent normoxia. I. Extracellular and intracellular acid-base status. Respir Pyhsiol 55:139–154CrossRefGoogle Scholar
  61. Holcomb M, Woolsey J, Cloud JG et al (2004) Effects of clove oil, tricaine, and CO2 on gamete quality of steelhead and white sturgeon. N Am J Aquac 66:228–233CrossRefGoogle Scholar
  62. Huertas M, Gisbert E, Rodriguez A, Cardona L, Williot P, Castello-Orvay F (2002) Acute exposure of Siberian sturgeon (Acipenser baerii) yearling to nitrite: median-lethal concentration (LC 50) determination, haematological changes and nitrite accumulation in selected tissues. Aquat Toxicol 57:257–266PubMedCrossRefGoogle Scholar
  63. Hufschmied P, Fankhauser T, Pugovkin D (2011) Automatic stress-free sorting of sturgeons inside culture tanks using image processing. J Appl Ichthyol 27:622–626CrossRefGoogle Scholar
  64. Huntingford FA, Adams C, Braithwaite VA et al (2006) Current issues in fish welfare: review paper. J Fish Biol 68(2):332–372CrossRefGoogle Scholar
  65. Iversen M, Finstad B, McKinley RS et al (2003) The efficacy of metomidate, clove oil, Aqui-S™ and Benzoak® as anaesthetics in Atlantic salmon (Salmo salar) smolts, and their potential stress-reducing capacity. Aquaculture 221:549–566CrossRefGoogle Scholar
  66. Iwanna G, Ackerman PA (1994) Anaesthesia. In: Hochachka PW, Mommensen TP (eds) Biochemistry and molecular biology of fishes, vol 3. Elsevier Sciences, Amsterdam, pp 1–15Google Scholar
  67. Javahery S, Nekoubin H, Moradlu AH (2012) Effect of anaesthesia with clove oil in fish (review). Fish Physiol Biochem 38:1545–1552PubMedCrossRefGoogle Scholar
  68. Jensen FB (2003) Nitrite disrupts multiple physiological functions in aquatic animals. Comp Biochem Physiol 135A:9–24CrossRefGoogle Scholar
  69. Key B (2016) Why fish do not feel pain? Anim Sentience 2016:003Google Scholar
  70. Kirschner LB (1995) Energetics aspects of osmoregulation in fresh water vertebrates. J Exp Biol 271:243–252Google Scholar
  71. Klimonov VO, Nikinorov CI, Vitvitskaya LV (1995) Spravochnik po primeneniyu anesteziruyushchikh veshchestv v rybovodsve (reference book on application of anesthetics in fish farming). M: Medionor: 170p (in Russian)Google Scholar
  72. Klyashtorin LB (1976) The sensitivity of young sturgeons to oxygen deficiency. J Ichthyol 16(4):677–682Google Scholar
  73. Kolman R (2006). Jesiotry chów i hodowla—Poradnik hodowcy. (Sturgeon breeding guide) Olsztyn, Wydawnictwo (Publishing) IRS: 117 pp (in Polish)Google Scholar
  74. Kolman R, Krilova VD, Filipova OP et al (1997) Dojrzewanie ryb jesiotowatych (maturation of sturgeon fish). Kom Ryb 5:1–3. (in Polish)Google Scholar
  75. Kouřil J, Hamackova J, Stupka Z et al (2003) Vliyanie temperatury na chuvstvitelnost Sibirskogo osetra (Acipenser baerii) k anesteziruyushchemu deistviyu gvozdichnogo masla. Akvakultura osetrovykh ryb: dostizheniya i perspektivy razvitiya. (effects of temperature on sensitivity of Siberian sturgeon (Acipenser baerii) to clove oil as anaestetic. Aquaculture of sturgeon fishes: achievements and prospects of development). In: Dukhanin AY and Boguerouk AK (eds) Reports and Abstracts of International Symposium “Cold water aquaculture: start in the XXI century”. Saint-Petersburg, Russia, September 8–13: 111 (in Russian)Google Scholar
  76. Krayushkina LS (2006) Consideration on evolutionary mechanisms of osmotic and ionic regulation in Acipenseridae: an overview. J Appl Ichthyol 22:70–76CrossRefGoogle Scholar
  77. Krayushkina LS, Moiseenko SN (1977) Functional characteristics of osmoregulation of ecological different species of acipenserids in hyper-osmotic medium. J Ichthyol 17(3):503–509Google Scholar
  78. Kroupova H, Machova J, Svobodova Z (2005) Nitrite influence on fish: a review. Vet Med Czech 50(11):461–471CrossRefGoogle Scholar
  79. Le Neindre P, Guatteo R, Guémené D et al (eds) (2009) Douleurs animales: les identifier, les comprendre, les limiter chez les animaux d’élevage. Expertise scientifique collective, synthèse du rapport. INRA, France, 98 ppGoogle Scholar
  80. Lee J-V, Loo J-L, Chuah Y-D et al (2013) The use of vision in a sustainable aquaculture feeding system. Res J Appl Sci Eng Technol 6(9):3658–3669Google Scholar
  81. Leivestad H (1982) Physiological effects of acid stress on fish. In: Johnson RE (ed) Acid rain/fisheries. American Fisheries Society, Bethesda, pp 157–164Google Scholar
  82. Leprêtre E, Anglade I, Williot P et al (1993) Comparative distribution of mammalian GnRH (Gonadotrophin—releasing hormone) and Chick. GnRH-II in the brain of the immature Siberian sturgeon (Acipenser baeri). J Comp Neurol 336:2–17Google Scholar
  83. Lines JA, Spence J (2011) Safeguarding the welfare of farmed fish at harvest. Fish Physiol Biochem. doi:10.1007/s10965-011-9561-5Google Scholar
  84. Lines JA, Robb DH, Kestin SC et al (2003) Electric stunning: a humane slaughter method for trout. Aquac Eng 28:141–154CrossRefGoogle Scholar
  85. López-Olmeda JF, Noble C, Sánchez-Vázquez FJ (2012) Does feeding time affect fish welfare? Fish Physiol Biochem 38:143–152PubMedCrossRefGoogle Scholar
  86. Martins CIM, Galhardo L, Noble C et al (2012) Behavioural indicators of welfare in farmed fish. Fish Physiol Biochem 38:17–41CrossRefPubMedGoogle Scholar
  87. Matsche MA (2013) Relative physiological effects of laparoscopic surgery and anaesthesia with tricaine methanesulphonate (MS-222) in Atlantic sturgeon Acipenser oxyrinchus oxyrinchus. J Appl Ichthyol 29:510–519CrossRefGoogle Scholar
  88. Maxime V, Nonnotte G, Peyraud C et al (1995) Circulatory and respiratory effects of a hypoxic stress in the Siberian sturgeon. Respir Physiol 100:203–212CrossRefPubMedGoogle Scholar
  89. McFarlane WJ, Cubitt KF, Williams H et al (2004) Can feeding status and stress level be assessed by analyzing patterns of muscle activity in free swimming rainbow trout (Oncorhynchus mykiss Walbaum)? Aquaculture 239:467–484CrossRefGoogle Scholar
  90. Mohler JW (2003) Culture manual for the Atlantic sturgeon. Acipenser oxyrinchus oxyrinchus. Region 5 United States Fish & Wildlife Service Publication, Hadley, MA, 68 ppGoogle Scholar
  91. Morgan JD, Iwama GK (1999) Energy cost of NaCl transport in isolated gills of cutthroat trout. Am J Physiol Regul Integr Comp Physiol 277:R631–R639CrossRefGoogle Scholar
  92. Müller-Graf C, Berthe F, Grudnik T et al (2012) Risk assessment in fish welfare, applications and limitations. Fish Physiol Biochem 38:231–241PubMedCrossRefGoogle Scholar
  93. New JG, Northcutt RG (1984) Primary projections of the trigeminal nerve in two species of sturgeon: Acipenser oxyrhynchus and Scaphirhynchus platorynchus. J Morphol 182:125–136PubMedCrossRefGoogle Scholar
  94. Nikonorov SN, Klimonov VO, Golovanova TS, et al. (2005) Primenenie anesteziruyushchikh veshchestv v osetrovodstve (use of anaesthetics in sturgeon culture). Voprosy Rybolovstva (Problems of Fisheries) VNIRO Publ. V. 6. I. 3(23): 575–598 (in Russian)Google Scholar
  95. Noble C, Cañon Jones HA, Damsgård B et al (2012) Injuries and deformities in fish: their potential impacts upon aquaculture production and welfare. Fish Physiol Biochem 38:61–83PubMedCrossRefGoogle Scholar
  96. Nonnotte G, Maxime V, Truchot JP et al (1993) Respiratory responses to progressive ambient hypoxia in the sturgeon, Acipenser baeri. Respir Physiol 91:71–82CrossRefPubMedGoogle Scholar
  97. Oberg EW, Perez KO, Fuiman LA (2015) Carbon dioxide is an effective anaesthetic for multiple marine fish species. Fish Res 165:22–27CrossRefGoogle Scholar
  98. OIE (2014) Chapter 7.1: Introduction to the recommendations for animal welfare. Article 7.1.1Google Scholar
  99. Petrova TG, Kozovkova NP, Kushnirova SA (2008) Poroda Sibirskogo (Lenskogo) osetra (Acipenser baerii) Lena-1 (the breed of Siberian (Lena) sturgeon (Acipenser baerii) Lena-1). In: Boguerouk A (ed) Breeds and domesticated forms of sturgeon fish. Stolichnaya tipografiya, Moscow, pp 44–51. (in Russian)Google Scholar
  100. Podushka SB, Chebanov MS (2007) Ikorno-tovarnoye osetrovodstvo v Kitaye. Hauchno-tekhnicheskiy byulleten laboratorii INENKO. (Caviar oriented sturgeon culture in China. Scientific and Technical Bulletin of INENKO Ichthyology laboratory). S-Pb 13:5–15 (in Russian)Google Scholar
  101. Poli BM, Parisi G, Scappini F et al (2005) Fish welfare and quality as affected by pre-slaughter and slaughter management. Aquac Int 13:29–49CrossRefGoogle Scholar
  102. Readman GD, Owen SF, Murell JC et al (2013) Do fish perceive anaesthetics as aversive? PLoS One 8(9):e73773PubMedPubMedCentralCrossRefGoogle Scholar
  103. Reilly SC, Quinn JP, Cossins AR et al (2008) Novel candidate genes identified in the brain during nociception in common carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss). Neurosci Lett 437:135–138PubMedCrossRefGoogle Scholar
  104. Ribas L, Flos R, Reig L et al (2007) Comparison of methods for anaesthetizing Senegal sole (Solea senegalensis) before slaughter: stress responses and final product quality. Aquaculture 269:250–258CrossRefGoogle Scholar
  105. Robb DHF, Kestin SC (2002) Methods used to kill fish: field observations and literature reviewed. Anim Welf 11(3):269–282Google Scholar
  106. Robb DHF, Roth B (2003) Brain activity of Atlantic salmon (Salmo salar) following electrical stunning various field strengths and pulse duration. Aquaculture 216:363–369CrossRefGoogle Scholar
  107. Robb DHF, Wotton SB, McKinstry JL et al (2000) Commercial slaughter methods used on Atlantic salmon: determination of the onset of brain failure by electroencephalography. Vet Rec 147:298–303PubMedCrossRefGoogle Scholar
  108. Rose JD (2007) Anthropomorphism and ‘mental welfare’ in fishes. Dis Aquat Org 75:139–154PubMedCrossRefGoogle Scholar
  109. Roth B, Slinde E, Robb DHF (2007) Percussive stunning of Atlantic salmon (Salmo salar) and the relation between force and stunning. Aquac Eng 36:192–197CrossRefGoogle Scholar
  110. Ruban G (2005) The Siberian sturgeon Acipenser baerii Brandt. Species structure and Ecology. World Sturgeon Conservation Society. Special publication No 1, Books on Demand GmbH, Norderstedt, Germany, 206pGoogle Scholar
  111. Ruchin AB (2007) Effect of photoperiod on growth, physiological and hematological indices of juvenile Siberian sturgeon Acipenser baerii. Biol Bull 34(6):583–589CrossRefGoogle Scholar
  112. Salin D (1992) La toxicité de l’ammoniaque chez l’esturgeon sibérien, Acipenser baerii: effets morphologiques, physiologiques, métaboliques d’une exposition à des doses sublétales et létales. Thèse No 749, Université Bordeaux I, 134ppGoogle Scholar
  113. Salin D, Williot P (1991) Acute toxicity of ammonia to Siberian sturgeon, Acipenser baeri B. In: Williot P (ed) ACIPENSER. Cemagref Publ, Antony, France, pp 153–167Google Scholar
  114. Servière J (2014) Science and animal welfare in France and European Union: rules, constraints, achievements. Meat Sci. doi:10.1016/j.meatsci.2014.06.043CrossRefPubMedGoogle Scholar
  115. Seth AK (2016) Why fish pain cannot and should not be ruled out? Anim Sentience 2016:020Google Scholar
  116. Shaluei F, Hedayati A, Jahanbakshi A et al (2012) Physiological responses of great sturgeon (Huso huso) to different concentrations of 2-phenoxyethanol. Fish Physiol Biochem 38:1627–1634PubMedCrossRefGoogle Scholar
  117. Shaughnessy CA, Baker DW, Brauner CJ, Morgan JD, Bystriansky JS (2015) Interaction of osmoregulatory and acid-base compensation in white sturgeon (Acipenser transmontanus) during exposure to aquatic hypercarbia and elevates salinity. J Exp Biol 218:2712–2719PubMedCrossRefGoogle Scholar
  118. Simide R, Rcichard S, Prévost-D’Alvise N et al (2016) Assessment of the accuracy of physiological blood indicators for the evaluation of stress, health status and welfare in Siberian sturgeon (Acipenser baerii) subject to chronic heat stress and dietary supplementation. Int Aquat Res 8:121–135CrossRefGoogle Scholar
  119. Sneddon LU (2002) Anatomical and electrophysiological analysis of the trigeminal nerve in the rainbow trout, Oncorhynchus mykiss. Neurosci Lett 319:167–171PubMedCrossRefGoogle Scholar
  120. Sneddon LU (2006) Ethics and welfare: pain perception in fish. Bull Eur Assoc Fish Pathol 26(1):6–10Google Scholar
  121. Sneddon LU (2011) Pain perception in fish. Evidence and implications for the use of fish. J Conscious Stud 18:209–229Google Scholar
  122. Sneddon LU, Braithwaite VA, Gentle MJ (2003) Do fish have nociceptors? Evidence for the evolution of a vertebrate sensory system. Proc R Soc Lond 270:1115–1121CrossRefGoogle Scholar
  123. Staaks G, Kirschbaum F, Williot P (1999) Experimental studies on thermal behaviour and diurnal activity rhythms of juvenile European sturgeons (Acipenser sturio). J Appl Ichthyol 15:243–247CrossRefGoogle Scholar
  124. Taylor PW, Roberts SD (1999) Clove oil: an alternative anaesthetic for aquaculture. N Am J Aquac 61(2):150–155CrossRefGoogle Scholar
  125. Tolstoganova L (1999) Acoustic activity of spiny sturgeon Acipenser nudiventris during prespawning. J Appl Ichthyol 15:296CrossRefGoogle Scholar
  126. Truchot JP (1987) Comparative aspects of extracellular acid-base balance. Zoophysiology. Springer, Heidelberg, Berlin, 248pCrossRefGoogle Scholar
  127. Truchot JP, Toulmond A, Dejours P (1980) Blood acid-base balance as a function of water oxygenation: a study at two different ambient CO2 levels in the dogfish, Scyliorhinus canicula. Respir Physiol 41:13–28PubMedCrossRefGoogle Scholar
  128. Trzebiatowski R (1970) Zastosowanie srodkow odurzajacych w rybackich pracach badawczych i hodowlanych (application of anaesthetics in fish breeding and selection activities). Gospod Rybna 22(12):4–5. (in Polish)Google Scholar
  129. Van de Vis H, Kestin S, Robb D et al (2003) Is humane slaughter of fish possible for industry? Aquac Res 34:211–220CrossRefGoogle Scholar
  130. Van de Vis JW, Poelman M, Lambooij E et al (2012) Fish welfare assurance system: initial steps to set up an effective tool to safeguard and monitor farmed fish welfare at a company level. Fish Physiol Biochem 38:243–257PubMedCrossRefGoogle Scholar
  131. Vasilieva LM, Arutyunova NV, Ibragimov KhF (1999) Opyt primeneniya ketamine dlya narkoza proixvoditeley ryb pri prizhiznennom poluchenii polovykh produktov. Resursosberegayushchie tekhnologii v akvakulture (Experience in application of ketamine for sedation of brood fish at intravital obtaining of gametes. Resource-saving technologies in aquaculture). Proceedings of 2nd International research and practice symposium. Krasnodar: 22–23 (in Russian)Google Scholar
  132. Wadiwel D (2016) Fish and pain: the politics of doubt. Animal Sentience 2016:038Google Scholar
  133. Wei Q, Zou Y, Li P, Li L (2011) Sturgeon aquaculture in China: progress, strategies and prospects assessed on the basis of nation-wide surveys (2007–2009). J Appl Ichthyol 27(2):162–168CrossRefGoogle Scholar
  134. William EM, Eddy FB (1986) Chloride uptake in fresh-water teleosts and its relationship to nitrite uptake and toxicity. J Comp Physiol B 156:867–872CrossRefGoogle Scholar
  135. Williot P (2002) Reproduction des esturgeons. In: Billard R (ed) Esturgeons et caviar. Lavoisier Tech et Doc, Paris, pp 63–90Google Scholar
  136. Williot P et Bourguignon G (1991) Production d’esturgeons et de caviar, état actuel et perspectives. In:Williot P (ed), Acipenser, Cemagref Publ., Antony, France, pp. 509–513.Google Scholar
  137. Williot P, Rouault T, Brun R, Miossec G, Rooryck O (1988) Grossissement intensif de l’esturgeon sibérien Acipenser baeri en bassin. AQUA revue, (17–18), pp. 29–32 et 27–32; (available upon request)Google Scholar
  138. Williot P, Bronzi P, Arlati G (1993) A very brief survey of status and prospects of freshwater sturgeon farming in Europe (EEC). In: Kestemont P, Billard R (eds) Aquaculture of freshwater species (except salmonids), vol 20. European Aquaculture Society, Oostende, pp 32–36Google Scholar
  139. Williot P, Sabeau L, Gessner J et al (2001) Sturgeon farming in Western Europe: recent developments and perspectives. Aquat Living Resour 14:367–374CrossRefGoogle Scholar
  140. Williot P, Arlati G, Chebanov M et al (2002) Status and management of Eurasian sturgeon: an overview. Int Rev Hydrobiol 87:483–506CrossRefGoogle Scholar
  141. Williot P, Rochard E, Desse-berset N et al (2011a) Brief introduction to sturgeon with a special focus on the European sturgeon, Acipenser sturio L. 1758. In: Williot P, Rochard E, Desse-Berset N, Kirschbaum F, Gessner J (eds) Biology and Conservation of the European sturgeon Acipenser sturio L. 1758. The reunion of the European and Atlantic sturgeons. Springer, Berlin, Heidelberg, pp 3–11CrossRefGoogle Scholar
  142. Williot P (1997) Reproduction de l’esturgeon sibérien (Acipenser baerii Brandt) en élevage: gestion des génitrices, compétence à la maturation in vitro de follicules ovariens et caractéristiques plasmatiques durant l’induction de la ponte. PhD thesis no. 1822. Université de Bordeaux I, 227pGoogle Scholar
  143. Williot P, Comte S, Le Menn F (2011b) Stress indicators throughout the reproduction of farmed Siberian sturgeon, Acipenser baerii (Brandt) females. Int Aquat Res 3:31–43Google Scholar
  144. Wood CM, McDonald DG (1982) Physiological mechanisms of acid toxicity to fish. In: Johnson RE (ed) Acid rain/fisheries. American Fisheries Society, Bethesda, pp 197–227Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Patrick Williot
    • 1
  • Mikhail Chebanov
    • 2
    • 3
  • Guy Nonnotte
    • 4
  1. 1.AudengeFrance
  2. 2.State Regional Center for Sturgeon Gene Pool Conservation “Kubanbioresursi”KrasnodarRussian Federation
  3. 3.Department of Aquatic Biological Resources and AquacultureKuban State UniversityKrasnodarRussian Federation
  4. 4.La Teste de BuchFrance

Personalised recommendations