Skip to main content

Genetic Variability in Farmed Brood Stocks of the Siberian Sturgeon in Poland

  • Chapter
  • First Online:
The Siberian Sturgeon (Acipenser baerii, Brandt, 1869) Volume 2 - Farming

Abstract

The Siberian sturgeon Acipenser baerii is one of the most common and most important sturgeon species cultured in Europe, being the main source of sturgeon meat and black caviar produced by large fish farms and international aquaculture companies. The present paper describes the genetic characteristics of Siberian sturgeon Acipenser baerii brood stock from the Polish fish farm. The genetic analysis, based on six polymorphic microsatellite DNA analysis, revealed a high level of genetic diversity in studied broodstock of Siberian sturgeon (PIC = 0.504–0.837 and I = 1.036–2.150). The observed values of allelic richness (A r) varied from 6.000 to 13.500 in examined fish group. Observed (Ho) and expected (He) heterozygosity across the studied loci showed values from 0.723 to 1.000 and from 0.586 to 0.857, respectively. Overall, the examined broodstock were not in Hardy-Weinberg equilibrium (H-WE), where five of the six microsatellite loci deviated from H-WE. The estimated effective population size (Ne) values by the linkage disequilibrium and the molecular coancestry methods were at the level of 47.3 (95% CI = 39.6–57.2) and 41.3 (95% CI = 3.0–128.7), respectively. A total number of 38 rare alleles within investigated microsatellite loci were found, which consisted 51% of qualitative composition of all detected alleles. All the analyzed genetic indicators suggested the good genetic condition and high genetic value of studied Siberian sturgeon farmed broodstock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ayllon F, Davine P, Beal E, Martinez JL, Garcia-Vasquez E (2004) Bottlenecks and genetic changes in Atlantic salmon (Salmo salar L.) stocks introduced in the Subantarctic Kerguelen Islands. Aquaculture 237:103–116

    Article  Google Scholar 

  • Bernas R, Burzynski A, Dębowski P, Pocwierz-Kotus A, Wenne R (2014) Genetic diversity within sea trout population from an intensively stocked southern Baltic river, based on microsatellite DNA analysis. Fish Manag Ecol 21:398–409

    Article  Google Scholar 

  • Cournet JM, Luikart G (1996) Description and power analysis of two testes for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    Google Scholar 

  • Ditlecadet D, Dufresne F, Le Francois NR, Blier PU (2006) Applying microsatellites in two commercial strains of Arctic charr (Salvelinus alpinus): Potential for a selective breeding program. Aquaculture 257:37–43

    Article  CAS  Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillet BJ, Ovenden JR (2013) NeEstimator V2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14(1):209–214

    Article  Google Scholar 

  • Excoffier L, Lischer L (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol Resour 10:564–567

    Article  Google Scholar 

  • FAO (2015) Food and Agriculture Organization of the United Nations. http://www.fao.org/home/en/. Accessed 30 June 2015

  • Fopp-Bayat D (2010) Microsatellite DNA variation in the Siberian sturgeon, Acipenser baerii (Actinopterygii, Acipenseriformes, Acipenseridae), cultured in a polish fish farm. Acta Ichthyol Piscat 40(1):21–25

    Article  Google Scholar 

  • Fopp-Bayat D, Ciereszko A (2012) Microsatellite genotyping of cryopreserved spermatozoa for the improvement of whitefish semen cryobanking. Cryobiology 65:196–201

    Article  CAS  Google Scholar 

  • Fopp-Bayat D, Furgala-Slezniow G (2010) Application of microsatellite DNA variation in Russian sturgeon (Acipenser gueldenstaedtii) and Sterlet (Acipenser ruthenus) cultured in a polish fish farm. Pol J Nat Sci 25(2):173–181

    Article  Google Scholar 

  • Fopp-Bayat D, Jankun M, Kuźmiński H (2010) Genetic characterization of polish cultured brook trout, Salvelinus fontinalis (Mitchill), based on microsatellite DNA analysis. Arch Pol Fish 18:93–99

    Article  Google Scholar 

  • Frankham R, Ballou JD, David A, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Froufe E, Sefc KM, Alexandrino P, Weiss S (2004) Isolation and characterization of Brachymystax lenok microsatellite loci and cross-species amplification in Hucho spp. and Parahucho perryi. Mol Ecol Notes 4:150–152

    Article  CAS  Google Scholar 

  • Glaubitz JC (2004) CONVERT: a user friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 4:309–310

    Article  CAS  Google Scholar 

  • Goudet J (2002) Fstat, a program to estimate and test gene diversities and fixation indices (version 2.9.3.2). Updated from Goudet (1995). http://www2.unil.ch/popgen/softwares/fstat.htm. Accessed 30 June 2015

  • Hansen M (2002) Estimating the long-term effects of stock-breaking domesticated trout into wild brown trout (Salmo trutta) populations: an approach using microsatellite DNA analysis of historical and contemporary samples. Mol Ecol 11:1003–1015

    Article  CAS  Google Scholar 

  • Hoarou G, Boon E, Jongma DN, Ferber S, Palsson J, van der Veer HW, Rijnsdorp AD, Stam WT, Olsen JL (2005) Low effective population size and evidence for inbreeding in an overexploited flatfish, plaice (Pleuronectes platessa L.) Proc R Soc B 272:497–503

    Article  Google Scholar 

  • IUCN (2015) Red list of threatened species. http://www.iucnredlist.org. Accessed 30 June 2015

  • Kaczmarczyk D, Fopp-Bayat D (2013) Assemblage of spawning pairs based on their individual genetic profiles—as tool for maintaining genetic variation within sturgeon populations. Aquacult Res 44:677–682

    Article  Google Scholar 

  • Kaczmarczyk D, Luczyński M, Brzuzan P (2012) Genetic variation in three paddlefish (Polyodon spathula Walbaum) stocks based on microsatellite DNA analysis. Czech J Anim Sci 57(8):345–352

    Article  CAS  Google Scholar 

  • Kim JE, Withler RE, Ritland C, Cheng KM (2004) Genetic variation within and between domesticated Chinook salmon, Oncorhynchus tshawytscha, strains and their progenitor populations. Environ Biol Fish 69:371–378

    Article  Google Scholar 

  • Kucinski M, Fopp-Bayat D, Liszewski T, Svinger V, Lebeda I, Kolman R (2015) Genetic analysis of four European huchen (Hucho hucho Linnaeus, 1758) broodstocks from Poland, Germany, Slovakia and Ukraine: implication for conservation. J Appl Genet 56:469–480. doi:10.1007/s13353-015-0274-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang LQ, Chang YM, Dong CZ, Sum XW (2004) Genetic analysis for Hucho taimen in Wusuli River with microsatellites. J Fish China 28(3):241–244

    CAS  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21(9):2128–2129

    Article  CAS  Google Scholar 

  • Luikart G, Cournet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237

    Article  Google Scholar 

  • Luikart G, Cournet JM (1999) Estimating the effective number of breeders from heterozygote excess in progeny. Genetics 151:1211–1216

    CAS  PubMed  PubMed Central  Google Scholar 

  • May B, Krueger CC, Kincaid HL (1997) Genetic variation at microsatellite loci in sturgeon: primer sequence homology in Acipenser and Scaphirhynchus. Can J Fish Aquat Sci 54:1542–1547

    Article  CAS  Google Scholar 

  • McQuown EC, Sloss BL, Sheehan RJ, Rodzen J, Tranah GJ, May B (2000) Microsatellite analysis of genetic variation in sturgeon: new primer sequences for Scaphirhynchus and Acipenser. Trans Am Fish Soc 129(6):1380–1388

    Article  CAS  Google Scholar 

  • Panagiotopoulou H, Popovic D, Zalewska K, Weglenski P, Stankovic A (2014) Microsatellite multiplex assay for the analysis of Atlantic sturgeon populations. J Appl Genet 55:505–510

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  Google Scholar 

  • Piry S, Luikard G, Cornuet JM (1999) Bottleneck: a computer program for detecting recent reductions in effective population size from allele frequency data. J Hered 4:502–503

    Article  Google Scholar 

  • Rousset F (2008) GenePop’007: a complete re-implementation of the GenePop software for windows and Linux. Mol Ecol Resour 8(1):103–106

    Article  Google Scholar 

  • Ruban GI, Akimova NV (2001) Reproductive system condition and the reason for decreased abundance of Siberian sturgeon Acipenser baerii from the Ob River. J Ichthyol 41:279–282

    Google Scholar 

  • Tringali MD, Bert TM (1998) Risk to genetic effective population size should be an important consideration in fish stock-enhancement programs. Bull Mar Sci 62(2):641–659

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotypes errors in microsatellite data. Mol Ecol Notes 4(3):535–538

    Article  Google Scholar 

  • Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10:506–513

    CAS  PubMed  Google Scholar 

  • Weiss S, Marić S, Snoj A (2011) Regional structure despite limited mtDNA sequence diversity found in the endangered huchen, Hucho hucho (Linnaeus, 1758). Hydrobiologia 658:103–110

    Article  CAS  Google Scholar 

  • Welsh AB, Bearwald MR, Friday M, May B (2014) The effect of multiple spawning events on cohort genetic diversity of lake sturgeon (Acipenser fluvescens) in the Kaministiquia River. Environ Biol Fish 98(3):755–762

    Article  Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19:395–420

    Article  Google Scholar 

  • Yeh FC, Boylet JB (1997) Population genetic analysis of codominant and dominant markers and quantitative traits. Belg J Bot 129:157

    Google Scholar 

  • You-Yi K, Guang-Xiang T, We X, Jia-Sheng Y, Xiao-Wen S (2009) Analysis of genetic diversity in the endangered Hucho taimen from China. Acta Ecol Sin 29:29–97

    Google Scholar 

Download references

Acknowledgments

We thank Elzbieta Fopp and Andrzej Fopp for providing the samples of Siberian sturgeon.

The study was supported by the project 0804 0809 of University of Warmia and Mazury in Olsztyn, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorota Fopp-Bayat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Fopp-Bayat, D., Kucinski, M., Laczynska, B., Liszewski, T. (2018). Genetic Variability in Farmed Brood Stocks of the Siberian Sturgeon in Poland. In: Williot, P., Nonnotte, G., Chebanov, M. (eds) The Siberian Sturgeon (Acipenser baerii, Brandt, 1869) Volume 2 - Farming. Springer, Cham. https://doi.org/10.1007/978-3-319-61676-6_16

Download citation

Publish with us

Policies and ethics