Skip to main content

Dendroecological Studies in the Neotropics: History, Status and Future Challenges

  • Chapter
  • First Online:
Book cover Dendroecology

Abstract

We review a vast literature of Neotropical forest science and wood anatomical research that identifies 220 tree species from 46 botanical families with confirmed annual tree-ring formation. External factors that trigger annual growth rhythms include rainfall seasonality, annual long-term flooding (flood-pulse), soil water salinity (mangroves), and, with increasing latitude and altitude, photoperiod and temperature. Maximum ages for tropical angiosperms derived from tree-ring analyses generally do not exceed 400–600 years; however, at marginal sites characterized by extremely limited growth conditions individual trees might get older. Dendroecological applications provide insights into tree species’ ecology and forest dynamics. Analyses of growth trajectories and age-size relationships of trees highlight considerable variability among individual trees, species, and environments. In recent decades tree-ring studies in neotropical forests have contributed new methods to project timber harvests and to evaluate and adjust management practices to increase the sustainability of forest management. The better understanding of individual- and species-level growth patterns in the Neotropics provides necessary empirical information to conserve and manage tropical forests and the many ecosystem functions and services that they maintain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams MD, Hock WK (2006) Annual growth rings and the impact of Benlate 50 DF fungicide on citrus trees in seasonally dry tropical plantations of northern Costa Rica. For Ecol Manage 227:96–101. doi:10.1016/j.foreco.2006.02.019

    Article  Google Scholar 

  • Alves ES, Angyalossy-Alfonso V (2000) Ecological trends in the wood anatomy of some Brazilian species. 1. Growth rings and vessels. IAWA J 21(1):3–30. doi:10.1163/22941932-90000233

    Article  Google Scholar 

  • Anchukaitis KJ, Evans MN, Wheelwright NT et al (2008) Stable isotope chronology and climate signal calibration in neotropical montane cloud forest trees. J Geophys Res 113:G03030. doi:10.1029/2007JG000613

    Article  CAS  Google Scholar 

  • Andrade ES, Garcia SSC, Albernaz ALKM et al (2017) Growth ring analysis of Euxylophora paraensis through X-ray microdensitometry. Ciência Rural 47(04):e20150895. doi:10.1590/0103-8478cr20150895

  • Andrade VHF (2015) Modelos de crescimento para Hymenaea courbaril L. and Handroanthus serratifolius (Vahl) S.O. Grosse em floresta de terra firme utilizando análise de anéis de crescimento. Dissertation, Universidade Federal do Paraná

    Google Scholar 

  • Andreu-Hayles L, Santos GM, Herrera-Ramírez DA et al (2015) Matching dendrochronological dates with the southern hemisphere 14C bomb curve to confirm annual tree rings in Pseudolmedia rigida from Bolivia. Radiocarbon 57(1):1–13. doi:10.2458/azu_rc.57.18192

    Article  CAS  Google Scholar 

  • Anholetto Jr CR (2013) Dendroecologia e composição isotópica (δ13C) dos anéis de crescimento de Cedrela odorata, Meliaceae, na Caatinga e Mata Atlântica do Estado de Sergipe, Brasil. Dissertation, Escola Superior de Agricultura Luiz de Queiroz

    Google Scholar 

  • Argollo J, Solíz C, Villalba R (2004) Potencialidad dendrocronológica de Polylepis tarapacana en los Andes Centrales de Bolivia. Ecología en Bolivia 39(1):5–24

    Google Scholar 

  • Assahira C, Piedade MTF, Trumbore SE et al (2017) Tree mortality of a flood-adapted species in response of hydrographic changes caused by an Amazonian river dam. For Ecol Manag. doi:10.1016/j.foreco.2017.04.016

  • Baas P, Vetter RE (eds) (1995) Growth rings in tropical trees. IAWA Bull 10:95–174. doi:10.1002/fedr.19901011103

  • Baker PJ, Bunyavejchewin S (2006) Suppression release and canopy recruitment in five tree species from a seasonal tropical forest in western Thailand. J Trop Ecol 22:521–529. doi:10.1017/S0266467406003312

    Article  Google Scholar 

  • Baker PJ, Bunyavejchewin S (2017) Complex historical disturbance regimes shape forest dynamics across a seasonal tropical landscape in western Thailand. In: Amoroso MM, Daniels LD, Baker PJ, Camarero JJ (eds) Dendroecology: tree-ring analyses applied to ecological studies. Springer, Cham

    Google Scholar 

  • Baker PJ, Bunyavejchewin S, Oliver CD et al (2005) Disturbance history and historical stand dynamics of a seasonal tropical forest in Western Thailand. Ecol Monogr 75(3):317–343. doi:10.1890/04-0488

    Article  Google Scholar 

  • Baker JCA, Hunt SFP, Clerici SJ et al (2015) Oxygen isotopes in tree rings show good coherence between species and sites in Bolivia. Glob Planet Chang 133:298–308. doi:10.1016/j.gloplacha.2015.09.008

    Article  Google Scholar 

  • Ballantyne AP, Baker PA, Chambers JQ et al (2011) Regional differences in South American monsoon precipitation inferred from the growth and isotopic composition of tropical trees. Earth Interact 15:1–35. doi:10.1175/2010EI277.1

    Article  Google Scholar 

  • Barbosa ACMC, Stahle DW, Martins TV et al (2013) Dendroclimatology on the São Francisco basin in Minas Gerais, Brazil. In: Abstracts of the International Workshop of Tropical Dendrochronology 2013, Universidade Federal de Lavras, 23–28 September 2013

    Google Scholar 

  • Berlage HP (1931) Over het verband tusschen de dikte der jaarringen van djatiboomen (Tectona grandis L. f.) en den regenval op Java. Tectona 24:939–953

    Google Scholar 

  • Biondi F (2001) A 400-year tree-ring chronology from the tropical treeline of North America. Ambio 30(3):162–166. doi:10.1639/0044-7447(2001)030[0162:aytrcf]2.0.co;2

    Article  CAS  PubMed  Google Scholar 

  • Biondi F, Estrada IG, Ruiz JCG et al (2003) Tree growth response to the 1913 eruption of Volcán de Fuego de Colima, Mexico. Quat Res 59:293–299. doi:10.1016/S0033-5894(03)00034-6

    Article  Google Scholar 

  • Blagitz M, Botosso PC, Bianchini E et al (2016) Periodicidade do crescimento de espécies arbóreas da Floresta Estacional Semidecidual no Sul do Brasil. Sci For 44:163–173. doi:10.18671/scifor.v44n109.16

    Article  Google Scholar 

  • Boltz F, Carter DR, Holmes TP et al (2011) Financial returns under uncertainty for conventional and reduced impact logging in permanent production forests of the Brazilian Amazon. Ecol Econ 39:387–398. doi:10.1016/s0921-8009(01)00231-2

    Article  Google Scholar 

  • Borchert R (1999) Climatic periodicity, phenology, and cambium activity in tropical dry forest trees. IAWA J 20:239–247. doi:10.1163/22941932-90000687

    Article  Google Scholar 

  • Bormann FH, Berlyn G (eds) (1981) Age and Growth Rate of Tropical Trees. New Directions for Research. Yale Univ Sch For Eviron Stud Bull 94:1–137

    Google Scholar 

  • Botosso PC, Vetter RE (1991) Alguns aspectos sobre a periodicidade e taxa de crescimento em 8 espécies arbóreas tropicais de floresta de terra firme (Amazônia). Rev lnst Flor 3(2):163–180

    Google Scholar 

  • Botosso PC, Vetter RE, Tomazello Filho M (2000) Periodicidade e taxa de crescimento de árvores de cedro (Cedrela odorata L., Meliaceae), jacareúba (Calophyllum angulare A. C. Smith, Clusiaceae) e muirapiranga (Eperua bijuga Mart. Ex Benth, Leg. Caesalpinioideae) de floresta de Terra Firme, em Manaus-AM. In: Roig FA (ed) Dendrocronología en América Latina, EDIUNC, Mendoza, p 357-380

    Google Scholar 

  • Brandes AFN, Albuquerque RP, Moraes LFD et al (2016) Annual tree rings in Piptadenia gonoacantha (Mart.) J.F.Macbr. in a restoration experiment in the Atlantic Forest: potential for dendroecological research. Acta Bot Bras 30(3):383–388. doi:10.1590/0102-33062016abb0101

  • Brandis D (1856) Report on the Teak Forests of Pegu. A Memorandum on the Teak in the Tharawaddy Forests. Printed by George Edward Eyre and William Spottiswoode, London

    Google Scholar 

  • Brandis D (1879) Memorandum of the rate of growth of teak. Indian Forester IV:221–225

    Google Scholar 

  • Bräuning A (2011) Editorial note for the special issue on ‘Tropical Dendroecology’. Trees 25:1–2. doi:10.1007/s00468-010-0530-x

    Article  Google Scholar 

  • Bräuning A, Volland-Voigt F, Burchardt I et al (2009) Climatic control of radial growth of Cedrela montana in a humid mountain rainforest in southern Ecuador. Erdkunde 63(4):337–345. doi:10.3112/erdkunde.2009.04.04

    Article  Google Scholar 

  • Breitsprecher A, Bethel JS (1990) Stem-growth periodicity of trees in a tropical wet forests of Costa Rica. Ecology 71:1156–1164. doi:10.2307/1937383

    Article  Google Scholar 

  • Briceño A, Rangel J, Bogino S (2016) Estudio de los anillos de crecimiento de Cordia alliodora (Ruiz & Pav.) Oken en Colombia. Colombia Forestal 19(2):219–232. doi:10.14483/udistrital.jour.colomb.for.2016.2.a07

    Article  Google Scholar 

  • Brienen RJW, Zuidema PA (2005) Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146:1–12. doi:10.1007/s00442-005-0160-y

    Article  PubMed  Google Scholar 

  • Brienen RJW, Zuidema PA (2006a) Lifetime growth patterns and ages of Bolivian rain forest trees obtained by tree ring analysis. J Ecol 94:481–493. doi:10.1111/j.1365-2745.2005.01080.x

    Article  Google Scholar 

  • Brienen RJW, Zuidema PA (2006b) The use of tree rings in tropical forest management: projecting timber yields of four Bolivian tree species. For Ecol Manage 226:256–267. doi:10.1016/j.foreco.2006.01.038

    Article  Google Scholar 

  • Brienen RJW, Zuidema PA (2007) Incorporating persistent tree growth differences increases estimates of tropical timber yield. Front Ecol Environ 5:302–306. doi:10.1890/1540-9295(2007)5[302:rcptgd]2.0.co;2

    Article  Google Scholar 

  • Brienen RJW, Zuidema PA, During HJ (2006) Autocorrelated growth of tropical forest trees: unraveling patterns and quantifying consequences. For Ecol Manag 237:179–190. doi:10.1016/j.foreco.2006.09.042

    Article  Google Scholar 

  • Brienen RJW, Lebrija-Trejos E, van Breugel M et al (2009) The potential of tree rings for the study of forest succession in southern Mexico. Biotropica 41:186–195. doi:10.1111/j.1744-7429.2008.00462.x

    Article  Google Scholar 

  • Brienen RJW, Lebrija-Trejos E, Zuidema PA et al (2010a) Climate-growth analysis for a Mexican dry forest tree shows strong impact of sea surface temperatures and predicts future growth declines. Glob Chang Biol 16:2001–2012. doi:10.1111/j.1365-2486.2009.02059.x

    Article  Google Scholar 

  • Brienen RJW, Lebrija-Trejos E, Zuidema PA et al (2010b) Attaining the canopy in dry and moist tropical forests: strong differences in tree growth trajectories reflect variation in growing conditions. Oecologia 163:485–496. doi:10.1007/s00442-009-1540-5

    Article  PubMed  Google Scholar 

  • Brienen RJW, Wanek W, Hietz P (2011) Stable carbon isotopes in tree rings indicate improved water use efficiency and drought responses of a tropical dry forest tree species. Trees 25:103–113. doi:10.1007/s00468-010-0474-1

    Article  CAS  Google Scholar 

  • Brienen RJW, Helle G, Pons TL et al (2012) Oxygen isotopes in tree rings are a good proxy for Amazon precipitation and El Niño-Southern Oscillation variability. PNAS 109(42):16957–16962. doi:10.1073/pnas.1205977109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brienen RJW, Hietz P, Wanek W et al (2013) Oxygen isotopes in tree rings record variation in precipitation δ18O and amount effects in the south of Mexico. J Geophys Res Biogeosci 118:1604–1615. doi:10.1002/2013jg002304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brienen RJW, Schöngart J, Zuidema PA (2016) Tree rings in the tropics: insights into the ecology and climate sensitivity of tropical trees. In: Goldstein G, Santiago LS (eds) Tropical tree physiology. Adaptations and responses in a changing environment. Springer International Publishing, Switzerland, pp 439–461

    Google Scholar 

  • Brown PM (1996) OLDLIST: a database of maximum tree ages. In: Dean JS, Meko DM, Swetnam YW (eds) Tree rings, environment, and humanity. Proceedings of the International Conference, Tucson, Arizona, 17–21 May, 1994. Radiocarbon 1996, pp 727–731

    Google Scholar 

  • Bruenig EF (1998) Conservation and management of tropical rainforests: an integrated approach to sustainability, 2nd edn. CAB International, Wallingford

    Google Scholar 

  • Bullock SH (1997) Effects of seasonal rainfall on radial growth in two tropical tree species. Int J Biometeorol 41:13–16. doi:10.1007/s004840050047

    Article  Google Scholar 

  • Callado CH, Neto SJS, Scarano FR et al (2001) Periodicity of growth rings in some flood-prone trees of the Atlantic Rain Forest in Rio de Janeiro, Brazil. Trees 15:492–497. doi:10.1007/s00468-001-0128-4

    Google Scholar 

  • Callado CH, Roig FA, Tomazello Filho M et al (2013) Cambial growth periodicity studies of South American woody species—a review. IAWA J 34(3):213–230. doi:10.1163/22941932-00000019

    Article  Google Scholar 

  • Cardoso DS (2014) Caracterização anatômica da madeira e potencial dendrocronológico de Schinopsis brasiliensis Engl. (Anacardiaceae) na caatinga sergipana. Dissertation, Universidade Federal de Sergipe

    Google Scholar 

  • Carmo JF (2016) Crescimento e propriedades da madeira de Copaifera langsdorffii Desf. sob regime de manejo florestal. Disseration, Universidade Federal Rural do Rio de Janeiro

    Google Scholar 

  • Chagas MP (2009) Caracterização dos anéis de crescimento e dendrocronologia de árvores de Grevillea robusta A. Cunn, Hovenia dulcis Thunb., Persea americana Mill., Tabebuia pentaphylla Hemsl. e Terminalia catappa L. nos municípios de Piracicaba e Paulínia, SP. Dissertation, Escola Superior de Agricultura Luiz de Queiroz

    Google Scholar 

  • Chambers JQ, Higuchi N, Schimmel JP (1998) Ancient trees in Amazonia. Nature 391:135–136. doi:10.1038/34325

    Article  CAS  Google Scholar 

  • Christie DA, Lara A, Barichivich J et al (2009) El Niño-Southern Oscillation signal in the world’s highest-elevation tree-ring chronologies from the Altiplano, Central Andes. Palaeogeogr Palaeocl 281:309–319. doi:10.1016/j.palaeo.2007.11.013

    Article  Google Scholar 

  • Cintra BBL, Schietti J, Emillio T et al (2013) Soil physical restrictions and hydrology regulate stand age and wood biomass turnover rates of Purus–Madeira interfluvial wetlands in Amazonia. Biogeosciences 10:7759–7774. doi:10.5194/bg-10-7759-2013

    Article  Google Scholar 

  • Costa WS (2014) Anatomia da madeira e dendrocronologia de espécies arbóreas do gênero Machaerium Pers. (Leguminosae-Papilionoideae). Dissertation, Universidade do Estado do Rio De Janeiro

    Google Scholar 

  • Costa MS, Ferreira KEB, Botosso PC et al (2015) Growth analysis of five Leguminosae native tree species from a seasonal semidecidual lowland forest in Brazil. Dendrochronologia 36:23–32. doi:10.1016/j.dendro.2015.08.004

    Article  Google Scholar 

  • Coster C (1927) Zur Anatomie und Physiologie der Zuwachszonen und Jahresringbildung in den Tropen. Ann Jard Bot Buitenzorg 37:49–160

    Google Scholar 

  • Coster C (1928) Zur Anatomie und Physiologie der Zuwachszonen und Jahresringbildung in den Tropen. Ann Jard Bot Buitenzorg 38:1–114

    Google Scholar 

  • Cunha TA, Finger CAG, Hasenauer H (2016) Tree basal area increment models for Cedrela, Amburana, Copaifera and Swietenia growing in the Amazon rain forests. For Ecol Manage 304:174–183. doi:10.1016/j.foreco.2015.12.031

    Article  Google Scholar 

  • Da Fonseca SF, Piedade MTF, Schöngart J (2009) Wood growth of Tabebuia barbata (E. Mey.) Sandwith (Bignoniaceae) and Vatairea guianensis Aubl. (Fabaceae) in Central Amazonian black-water (igapó) and white-water (várzea) floodplain forests. Trees 23:127–134. doi:10.1007/s00468-008-0261-4

    Article  Google Scholar 

  • Davidson EA, Araújo AC, Artaxo P et al (2012) The Amazon basin in transition. Nature 481:321–328. doi:10.1038/nature10717

    Article  CAS  PubMed  Google Scholar 

  • Dawkins HC, Philip MS (1998) Tropical Moist forest silviculture and management: a history of success and failure. CAB International, Wallingford

    Google Scholar 

  • De Ridder M, van den Bulcke J, van Acker J et al (2013) Tree-ring analysis of an African long-lived pioneer species as a tool for sustainable forest management. For Ecol Manage 304:417–426. doi:10.1016/j.foreco.2013.05.007

    Article  Google Scholar 

  • Détienne P (1995) Nature et périodicité des cernes dans quelques bois Guaynais. Bois et Forêts des Tropiques 243:65–75

    Google Scholar 

  • Détienne P, Barbier C, Ayphassorho H et al (1988) Rythmes de croissance de quelques essences de Guayne Française. Bois et Forêts des Tropiques 217:63–76

    Google Scholar 

  • Devall MS, Parresol BR, Wright SJ (1995) Dendroecological analysis of Cordia alliodora, Pseudobombax septenatum and Annona spraguei in central Panama. IAWA J 16(4):411–424. doi:10.1163/22941932-90001430

    Article  Google Scholar 

  • Dezzeo N, Worbes M, Ishii I et al (2003) Growth rings analysis of four tropical tree species in seasonally flooded forest of the Mapire River, a tributary of the lower Orinoko River, Venezuela. Plant Ecol 168:165–175. doi:10.1023/A:1024417610776

    Article  Google Scholar 

  • Di Filippo A, Pederson N, Baliva M et al (2015) The longevity of broadleaf deciduous trees in Northern Hemisphere temperate forests: insights from tree-ring series. Front Ecol Evol 3:46. doi:10.3389/fevo.2015.00046

    Article  Google Scholar 

  • Dünisch O, Bauch J, Sack M et al (1999) Growth dynamics in wood formation of plantation-grown Swietenia macrophylla King and Carapa guianensis Aubl. Mitt Bundesforschungsanstalt Forst- und Holzwirtschaft, Hamburg 193:79–96

    Google Scholar 

  • Dünisch O, Montóia VR, Bauch J (2003) Dendroecological investigations on Swietenia macrophylla King and Cedrela odorata L. (Meliaceae) in the central Amazon. Trees 17(3):244–250. doi:10.1007/s00468-002-0230-2

    Google Scholar 

  • Dykstra JA, Heinrich R (1996) FAO model code of forest harvesting practice. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Eckstein D, Sass U, Baas P (eds) (1995) Growth periodicity in tropical trees: proceedings of an international meeting held in Kuala Lumpur, Malaysia, 16–18 November, 1994. IAWA J 16(4):323–442

    Google Scholar 

  • Edwards DP, Tobias JA, Sheil D et al (2014) Maintaining ecosystem function and services in logged tropical forests. TREE 29(9):511–520. doi:10.1016/j.tree.2014.07.003

    PubMed  Google Scholar 

  • Enquist BJ, Leffler AJ (2001) Long-term tree ring chronologies from sympatric tropical dry-forest trees: individualistic responses to climatic variation. J Trop Ecol 17:41–60. doi:10.1017/s0266467401001031

    Article  Google Scholar 

  • Espinoza MJP, Guillen GJI, Morales MS et al (2014) Potencialidad de Cedrela odorata (Meliaceae) para estúdios dendrocronológicos en la selva central del Perú. Rev Biol Trop 62(2):783–793. doi:10.15517/rbt.v62i2.9835

    Article  Google Scholar 

  • Estrada GCD, Callado CH, Soares MLG et al (2008) Annual growth rings in the mangrove Laguncularia racemosa (Combretaceae). Trees 22:663–670. doi:10.1007/s00468-008-0224-9

    Article  Google Scholar 

  • Ferreira GB (2012) Análise dendroclimatológica do cedro (Cedrela fissilis L.) para reconstrução do cenário ambiental recente da cidade de São Paulo (SP). Dissertation, Univeridade de São Paulo

    Google Scholar 

  • Ferreira-Fedele L, Tomazello Filho M, Botosso PC et al (2004) Periodicidade do crescimento de Esenbeckia leiocarpa Engl. (guarantã) em duas áreas da região Sudeste do Estado de São Paulo. Scientia Florestalis 65:141–149

    Google Scholar 

  • Fichtler E, Clark DA, Worbes M (2003) Age and long-term growth of trees in an old-growth tropical rain forest, based on analyses of tree rings and 14C. Biotropica 35:306–317. doi:10.1646/03027

    Article  Google Scholar 

  • Fichtler E, Helle G, Worbes M (2010) Stable-carbon isotope time series from tropical tree rings indicate a precipitation signal. Tree-Ring Res 66(1):35–49. doi:10.3959/2008-20.1

    Article  Google Scholar 

  • Fortes CF (2006) Estudos Dendrocronológicos da Espécie arbórea Vochysia divergens Pohl (Vochysiaceae) no Pantanal Norte Matogrossense. Dissertation Universidade Federal de Mato Grosso, Brasil

    Google Scholar 

  • Free CM, Landis RM, Grogan J et al (2014) Management implications of long-term tree growth and mortality rates: a modeling study of big-leaf mahogany (Swietenia macrophylla) in the Brazilian Amazon. For Ecol Manag 330:46–54. doi:10.1016/j.foreco.2014.05.057

    Article  Google Scholar 

  • Free CM, Grogan J, Schulze MD et al (2017) Current Brazilian forest management guidelines are unsustainable for Swietenia, Cedrela, Amburana, and Copaifera: a response to da Cunha and colleagues. For Ecol Manag 386:81–83. doi:10.1016/j.foreco.2016.09.031

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic, London

    Google Scholar 

  • Funck J (2004) Untersuchungen zur Wachstumsdynamik von Cariniana micrantha (Ducke) in der Nähe von Itacoatiara/Amazonien. Albert-Ludwigs Universität Freiburg, Dissertation

    Google Scholar 

  • Gamble JS (1881) A Manual of Indian timbers. An account of the Structure, growth, distribution, and qualities of Indian woods, 1st edn. Office of the Superintendent of Government Printing, Calcutta

    Google Scholar 

  • Geiger F (1915) Anatomische Untersuchungen über die Jahresbildung von Tectona grandis. Jahrbücher für wissenschaftliche Botanik 55:521–607

    Google Scholar 

  • Gerwing JJ (2002) Degradation of forests through logging and fire in the eastern Brazilian Amazon. For Ecol Manag 157:131–141. doi:10.1016/s0378-1127(00)00644-7

    Article  Google Scholar 

  • Giraldo VD, del Valle JI (2012) Modelación del crecimiento de Albizia niopoides (Mimosaceae) por métodos dendrocronológicos. Rev Biol Trop 60(3):1117–1136. doi:10.15517/rbt.v60i3.1762

    Article  PubMed  Google Scholar 

  • Grogan J, Schulze M (2011) The impact of annual and seasonal rainfall patterns on growth and phenology of emergent tree species in Southeastern Amazonia, Brazil. Biotropica 44:332–340. doi:10.1111/j.1744-7429.2011.00825.x

    Google Scholar 

  • Grogan J, Landis RM, Free CM et al (2014) Bigleaf mahogany Swietenia macrophylla population dynamics and implications for sustainable management. J Appl Ecol 51(3):664–674. doi:10.1111/1365-2664.12210

    Article  Google Scholar 

  • Gutiérrez LAB, Ramos GMV (2013) Anatomía de anillos de crecimiento de 80 especies arbóreas potenciales para estudios dendrocronológicos en la Selva Central, Perú. Rev Biol Trop 61(3):1025–1037. doi:10.15517/rbt.v61i3.11778

    Google Scholar 

  • García-Cervigón AI, Camarero JJ, Espinosa CI (2017) Intra-annual stem increment patterns and climatic responses in five tree species from an Ecuadorian tropical dry forest. Trees 31:1057–1067. doi:10.1007/s00468-017-1530-x

  • Hallé F, Oldeman RAA, Tomlinson PB (1978) Tropical trees and forests. An architectural analysis. Springer, New York

    Google Scholar 

  • Hastenrath S (1963) Dendrochronologie in El Salvador. Meteorol Rundsch 4:110–113

    Google Scholar 

  • Hayden B (2008) Annual growth rings in dry tropical forest trees. Dissertation, Concordia University

    Google Scholar 

  • Herrera DA, del Valle JI (2011) Reconstrucción de los niveles del Río Atrato con anillos de crecimiento de Prioria copaifera. Dyna 78:121–130

    Google Scholar 

  • Holmes TP, Blate GM, Zweede JC et al (2002) Financial and ecological indicators of reduced impact logging performance in the eastern Amazon. For Ecol Manag 163:93–110. doi:10.1016/s0378-1127(01)00530-8

    Article  Google Scholar 

  • Hua Q, Barbetti M, Worbes M et al (1999) Review of radiocarbon data from atmospheric and tree ring samples for the period 1950–1977 AD. IAWA J 20(3):261–284. doi:10.1163/22941932-90000690

    Article  Google Scholar 

  • Hua Q, Barbetti M, Rakowski AZ (2013) Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55:2059–2072. doi:10.2458/azu_js_rc.v55i2.16177

    Article  CAS  Google Scholar 

  • Huante P, Rincón E, Swetnam TW (1991) Dendrochronology of Abies religiosa in Michoaca, Mexico. Tree-Ring Bull 51:15–28

    Google Scholar 

  • Inga JG, del Valle JI (2017) Log-relative growth: a new dendrochronological approach to study diameter growth in Cedrela odorata and Juglans neotropica, Central Forest, Peru. Dendrochronologia 44:117–129. doi:10.1016/j.dendro.2017.03.009

  • Ishii IH (1998) Estudos dendrocronológicos e determinação de idade de árvores das matas ciliares do Pantanal Sul Mato-grossense. Dissertation, Universidade de São Carlos

    Google Scholar 

  • Jenkins HS (2009) Amazon climate reconstruction using growth rates and stable isotopes of tree ring cellulose from the Madre de Dios Basin, Peru. Dissertation, Duke University

    Google Scholar 

  • Jiménez JAG, del Valle JIA (2011) Estudio del crecimiento de Prioria copaifera (Caesalpinaceae) mediante técnicas dendrocronológicas. Rev Biol Trop 59(4):1813–1831

    Google Scholar 

  • Johns JS, Baretto P, Uhl C (1996) Logging damage during planned and unplanned logging operations in the eastern Amazon. For Ecol Manag 89:59–77. doi:10.1016/s0378-1127(96)03869-8

    Article  Google Scholar 

  • Jomelli V, Pavlova I, Guin O et al (2012) Analysis of the dendroclimatic potential of Polylepis pepei, P. subsericans and P. rugulosa In the tropical Andes (Peru-Bolivia). Tree-Ring Res 68(2):91–103. doi:10.3959/2011-10.1

    Article  Google Scholar 

  • Junk WJ, Barley PB, Sparks RE (1989) The flood-pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106:110–127

    Google Scholar 

  • Junk WJ, Wittmann F, Schöngart J et al (2015) A classification of the major habitats of Amazonian black-water river floodplains and a comparison with their white-water counterparts. Wetl Ecol Manag 23:677–693. doi:10.1007/s11273-015-9412-8

    Article  CAS  Google Scholar 

  • Lamprecht H (1989) Silviculture in the tropics: tropical forest ecosystems and their tree species—possibilities and methods for their long-term utilization. GTZ, Eschborn

    Google Scholar 

  • Lara A (1991) The dynamics and disturbance regimes of Fitzroya cupressoides forests in the south-central Andes of Chile. Dissertation, University of Colorado

    Google Scholar 

  • Larson DW, Matthes U, Gerrath JA et al (2000) Evidence for the widespread occurrence of ancient forests on cliffs. J Biogeogr 27:319–331. doi:10.1046/j.1365-2699.2000.00401.x

    Article  Google Scholar 

  • Latorraca JVC, Souza MT, Silva LDSAB et al (2015) Dendrocronologia de árvores de Schizolobium parahyba (Vell.) S. F. Blake de ocorrência na Rebio de Tinguá-RJ. Rev Árvore 39(2):385–394. doi:10.1590/0100-67622015000200018

    Article  Google Scholar 

  • Laurance WF, Nascimento HEM, Laurance SG et al (2004) Inferred longevity of Amazonian rainforest trees based on a long-term demographic study. For Ecol Manage 190:131–143. doi:10.1016/j.foreco.2003.09.011

    Article  Google Scholar 

  • Leite PTM (2012) Dendroecologia de Tabebuia aurea (Manso) Benth & Hook e Tabebuia heptaphylla (Vell.) Toledo (Bignoniaceae) no Pantanal de Mato Grosso, Brasil. Dissertation, Universidade Federal do Mato Grosso

    Google Scholar 

  • Leoni JM, da Fonseca Jr SF, Schöngart J (2011) Growth and population structure of the tree species Malouetia tamaquarina (Aubl.) (Apocynaceae) in the central Amazonian floodplain forests and their implication for management. For Ecol Manage 261:62–67. doi:10.1016/j.foreco.2010.09.025

    Article  Google Scholar 

  • Lieberman M, Lieberman D (1985) Simulation of growth curves from periodic increment data. Ecology 66:632–635. doi:10.2307/1940415

    Article  Google Scholar 

  • Lisi CL, Pessenda LCR, Filho T et al (2001) 14C bomb effects in tree rings of tropical and subtropical species of Brazil. Tree-Ring Res 57(2):191–196

    Google Scholar 

  • Lisi CL, Tomazello Filho M, Botosso PC et al (2008) Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous forest in Southeast Brazil. IAWA J 29(2):189–207. doi:10.1163/22941932-90000179

    Article  Google Scholar 

  • Lobão MS (2011) Dendrocronologia, fenologia, atividade cambial e qualidade do lenho de árvores de Cedrela odorata L., Cedrela fissilis Vell. e Schizolobium parahyba var. amazonicum Hub ex Ducke, no Estado do Acre, Brasil. Dissertation, Escola Superior de Agricultura Luiz de Queiroz

    Google Scholar 

  • Locosselli GM, Buckeridge MS, Moreira MZ et al (2013) A multi-proxy dendroecological analysis of two tropical species (Hymenaea spp., Leguminosae) growing in a vegetation mosaic. Trees 27:25–36. doi:10.1007/s00468-012-0764-x

    Article  Google Scholar 

  • Locosselli GM, Cardim RH, Ceccantini G (2016a) Rock outcrops reduce temperature-induced stress for tropical conifer by decoupling regional climate in the semiarid environment. Int J Biometeorol 60:639–649. doi:10.1007/s00484-015-1058-y

    Article  PubMed  Google Scholar 

  • Locosselli GM, Schöngart J, Ceccantini G (2016b) Climate/growth relations and teleconnections for a Hymenaea courbaril (Leguminosae) population inhabiting the dry forest on karst. Trees 30:1127–1136. doi:10.1007/s00468-015-1351-8

    Article  Google Scholar 

  • Locosselli GM, Krottenthaler S, Pitsch P et al (2017) Age and growth rate of congeneric tree species (Hymenaea spp.-Leguminosae) inhabiting different tropical biomes. Erdkunde 71:45–57. doi:10.3112/erdkunde.2017.01.03

    Article  Google Scholar 

  • Loehle C (1988) Tree life history strategies: the role of defenses. Can J For Res 18:209–222. doi:10.1139/x88-032

    Article  Google Scholar 

  • López L, Villalba R (2011) Climate influences on the radial growth of Centrolobium microchaete, a valuable timber species from the tropical dry forests in Bolivia. Biotropica 43:41–49. doi:10.1111/j.1744-7429.2010.00653.x

    Article  Google Scholar 

  • López L, Villalba R (2016a) An assessment of Schinopsis brasiliensis Engler (Anacardiaceae) for dendroclimatological applications in the tropical Cerrado and Chaco forests, Bolivia. Dendrochronologia 40:85–92. doi:10.1016/j.dendro.2016.07.002

    Article  Google Scholar 

  • López L, Villalba R (2016b) Reliable estimate of radial growth for eight tropical tree species based on wood anatomical patterns. J Trop For Sci 28(2):139–152

    Google Scholar 

  • López BC, Sabaté S, Gracia CA et al (2005) Wood anatomy, description of annual rings, and responses to ENSO events of Prosopis pallida H.B.K., a wide-spread woody plant of arid and semi-arid lands of Latin America. J Arid Environ 61:541–554. doi:10.1016/j.jaridenv.2004.10.008

    Article  Google Scholar 

  • López BC, Rodríguez R, Gracia CA et al (2006) Climatic signals in growth and its relation to ENSO events of two Prosopis species following a latitudinal gradient in South America. Glob Chang Biol 12:897–906. doi:10.1111/j.1365-2486.2006.01138.x

    Article  Google Scholar 

  • López L, Villalba R, Peña-Claros M (2012) Determining the annual periodicity of growth rings in seven tree species of a tropical moist forest in Santa Cruz, Bolivia. For Syst 21(3):508–514. doi:10.5424/fs/2012213-02966

    Google Scholar 

  • López L, Villalba R, Bravo F (2013) Cumulative diameter growth and biological rotation age for seven tree species in the Cerrado biogeographical province of Bolivia. For Ecol Manage 292:49–55. doi:10.1016/j.foreco.2012.12.011

    Article  Google Scholar 

  • Lusk CH (1999) Long-lived light-demanding emergents in southern temperate forests: the case of Weinmannia trichosperma (Cunoniaceae) in Chile. Plant Ecol 140(1):111–115. doi:10.1023/A:1009764705942

    Article  Google Scholar 

  • Marcati CR, Angyalossy V, Evert RF (2006) Seasonal variation in wood formation of Cedrela fissilis (Meliaceae). IAWA J 27(2):199–211. doi:10.1163/22941932-90000149

    Article  Google Scholar 

  • Marcati CR, Milanez CRD, Machado SR (2008) Seasonal development of secondary xylem and phloem in Schizolobium parahyba (Vell.) Blake (Leguminosae: Caesalpinioideae). Trees 22:3–12. doi:10.1007/s00468-007-0173-8

    Article  Google Scholar 

  • Marcati C, Machado SR, Podadera D et al (2016) Cambial activity in dry and rainy season on branches from woody species growing in Brazilian Cerrado. Flora 223:1–10. doi:10.1016/j.flora.2016.04.008

    Article  Google Scholar 

  • Maria VRP (2002) Estudo da periodicidade do crescimento, fenologia, e relação com a atividade cambial de espécies arbóreas tropicais de florestas estacionais semideciduais. Dissertation, Escola Superior de Agricultura Luiz de Queiroz

    Google Scholar 

  • Mariaux A (1967) Les cernes dans les bois tropicaux africains, nature et périodicité. Bois et Forêts des Tropiques 113:3–14

    Google Scholar 

  • Martínez-Ramos M, Alvarez-Buylla ER (1998) How old are tropical rainforest trees? Trends Plant Sci 3(10):400–405. doi:10.1016/S1360-1385(98)01313-2

    Article  Google Scholar 

  • Mattos PP (1998) Identificação de anéis anuais de crescimento e estimativa de idade e incremento anual em diâmetro de espécies nativas do Pantanal da Nhecolândia, MS. Dissertation, Universidade Federal do Paraná

    Google Scholar 

  • Mattos PP, Braz EM, Domene VD et al (2015) Climate-tree growth relationships of Mimosa tenuiflora in seasonally dry tropical forests, Brazil. Cerne 21(1):141–149. doi:10.1590/01047760201521011460

    Article  Google Scholar 

  • Medeiros RS (2016) Estudo da anatomia do lenho e dendrocronologia de árvores de Copaifera multijuga Hayne na Amazonia brasileira e sua relacao com o manejo e extracao de oleorresina. Dissertation, Escola Superior de Agricultura Luiz de Queiroz

    Google Scholar 

  • Mehlig U, Menezes MPM, Reise A et al (2010) Mangrove vegetation of the Caeté Estuary. In: Saint-Paul U, Schneider H (eds) Mangrove dynamics and management in North Brazil, Ecological Studies, vol 211. Springer, Heidelberg, Dordrecht, London, New York, pp 71–107

    Chapter  Google Scholar 

  • Mendivelso HA, Camarero JJ, Obregón OR et al (2013) Differential growth responses to water balance of coexisting deciduous tree species are linked to wood density in a Bolivian tropical dry forest. Plos One 8:e73855. doi:10.1371/journal.pone.0073855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menezes M, Berger U, Worbes M (2003) Annual growth rings and long-term growth patterns of mangrove trees from the Braganca Peninsula, Northern Brazil. Wetl Ecol Manag 11:233–242. doi:10.1023/A:1025059315146

    Article  Google Scholar 

  • Mohr A (2013) Ecologia populacional de Qualea ingens Warm. e Ruizterania wittrockii (Malme) Marc.-Berti (Vochysiaceae) na Região do Médio Araguaia, Mato Grosso. Dissertation, Universidade do Estado de Mato Grosso

    Google Scholar 

  • Montanher DR (2012) Aspectos dendrocronológicos de três espécies arbóreas nas áreas alagáveis do alto Rio Paraná. Dissertation, Universidade Estadual de Maringá

    Google Scholar 

  • Morales MS, Villalba R, Grau HR et al (2004) Rainfall-controlled tree growth in high-elevation subtropical treelines. Ecology 85(11):3080–3089. doi:10.1890/04-0139

    Article  Google Scholar 

  • Morel H, Mangenet T, Beauchêne J et al (2015) Seasonal variations in phenological traits: leaf shedding and cambial activity in Parkia nitida Miq. and Parkia velutina Benoist (Fabaceae) in tropical rainforest. Trees 29:973–984. doi:10.1007/s00468-015-1177-4

    Article  Google Scholar 

  • Moya J, Lara A (2011) Cronologías de ancho de anillos de queñoa (Polylepis tarapacana) para los últimos 500 años en el Altiplano de la región de Arica y Parinacota, Chile. Bosque 32(2):165–173. doi:10.4067/s0717-92002011000200007

    Article  Google Scholar 

  • Nascimento MBG (2013) Anéis de crescimento, incremento em circunferência do tronco e anatomia da madeira de espécies arbóreas da Floresta Estacional Semidecidual do Sul do Brasil. Dissertation, Universidade Estadual de Londrina

    Google Scholar 

  • Nebel G, Dragsted J, Simonsen TR et al (2001) The Amazon flood plain forest tree Maquira coriacea (Karsten) CC Berg: aspects of ecology and management. For Ecol Manag 150:103–113. doi:10.1016/s0378-1127(00)00684-8

    Article  Google Scholar 

  • Nogueira Jr FC (2011) Estrutura e composição de uma vegetação ripária. Relações dendrocronológicos e climáticos na Serra dos Macacos em Tobias Barreto, Sergipe-Brasil. Dissertation, Universidade Federal do Sergipe

    Google Scholar 

  • Nydal R, Lövseth K (1983) Tracing bomb 14C in the atmosphere 1962-1980. J Geophys Res 88:3621–3642. doi:10.1029/jc088ic06p03621

    Article  CAS  Google Scholar 

  • Ohashi S, Durgante FM, Kagawa A et al (2016) Seasonal variations in the stable oxygen isotope ratio of wood cellulose reveal annual rings of trees in a Central Amazon terra firme forest. Oecologia 180:685–696. doi:10.1007/s00442-015-3509-x

    Article  PubMed  Google Scholar 

  • Oliveira MF (2014) Critérios para o manejo sustentável de duas espécies madeireiras das florestas tropicais do Mato Grosso. Dissertation, Universidade Federal do Paraná

    Google Scholar 

  • Oliveira JM, Santarosa E, Pillar DP et al (2009) Seasonal cambium activity in the subtropical rain forest tree Araucaria angustifolia. Trees 23:107–115. doi:10.1007/s00468-008-0259-y

    Article  Google Scholar 

  • Oliveira JM, Roig FA, Pillar DP (2010) Climatic signals in tree-rings of Araucaria angustifolia in the southern Brazilian highlands. Austral Ecol 35:134–147. doi:10.1111/j.1442-9993.2009.02018.x

    Article  Google Scholar 

  • Pagotto MA (2015) A vegetação lenhosa da caatinga em assentamento do estado de Sergipe: aspectos fitossociológicos, anatômicos e dendrocronológicos. Dissertation, Universidade Federal do Sergipe

    Google Scholar 

  • Pagotto MA, Roig FA, Ribeiro AS et al (2015) Influence of regional rainfall and Atlantic sea surface temperature on tree-ring growth of Poincianella pyramidalis, semiarid forest from Brazil. Dendrochronologia 35:14–23. doi:10.1016/j.dendro.2015.05.007

    Article  Google Scholar 

  • Paredes-Villanueva K, Sánchez-Salguero R, Manzanedo RD et al (2013) Growth rate and climatic response of Machaerium scleroxylon in a dry tropical forest in southeastern Santa Cruz, Bolivia. Tree-Ring Res 69:63–79. doi:10.3959/1536-1098-69.2.63

    Article  Google Scholar 

  • Paredes-Villanueva K, López L, Brookhouse M et al (2015) Rainfall and temperature variability in Bolivia derived from the tree-ring width of Amburana cearensis (Fr. Allem.) A.C. Smith. Dendrochronologia 35:80–86. doi:10.1016/j.dendro.2015.04.003

    Article  Google Scholar 

  • Paredes-Villanueva K, López L, Cerrillo RMN (2016) Regional chronologies of Cedrela fissilis and Cedrela angustifolia in three forest types and their relation to climate. Trees 30:1581–1593. doi:10.1007/s00468-016-1391-8

    Article  Google Scholar 

  • Pereira GA, Barbosa ACMC, Stahle DW et al (2016) Climate-sensitive chronology of Cedrela fissilis from middle São Francisco basin, eastern Brazil. In: Abstracts of the Third American Dendrochronology Conference 2016, 28 March–1 April 2016, Mendoza

    Google Scholar 

  • Petrillo M, Cherubini P, Fravolini G et al (2016) Time since death and decay rate constants of Norway spuce and European larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating. Biogeosciences 13:1537–1552. doi:10.5194/bg-13-1537-2016

    Article  Google Scholar 

  • Pinto LAA (2012) Estudos dendrocronológicos da Manilkara huberi (Sapotaceae) em uma floresta de terra firme da Amazônia central. Dissertation, Instituto Nacional de Pesquisas da Amazônia/Universidade do Estado do Amazonas

    Google Scholar 

  • Pucha-Cofrep D, Peters T, Bräuning A (2015) Wet season precipitation during the past century reconstructed from tree-rings of a tropical dry forest in Southern Ecuador. Glob Planet Chang 133:65–78. doi:10.1016/j.gloplacha.2015.08.003

    Article  Google Scholar 

  • Putz FE, Sist P, Fredericksen T et al (2008) Reduced-impact logging: challenges and opportunities. For Ecol Manag 256:1427–1433. doi:10.1016/j.foreco.2008.03.036

    Article  Google Scholar 

  • Ramírez Correa JA, Grajales ECM, Escobar MB (2010) Anillos anuales y clima en Rhizophora mangle L. de la Bahía de Cispatá, Colombia. Rev Fac Nac Agron Medellín 63(2):5639–5650

    Google Scholar 

  • Ramírez JA, del Valle JI (2011) Paleoclima de La Guajira, Colombia; según los anillos de crecimiento de Capparis odoratissima (Capparidaceae). Rev Biol Trop 59(3):1389–1405. doi:10.15517/rbt.v0i0.3406

    PubMed  Google Scholar 

  • Ramírez JA, del Valle JI (2012) Local and global climate signals from tree rings of Parkinsonia praecox in La Guajira, Colombia. Int J Climatol 32(7):1077–1082. doi:10.1002/joc.2335

    Article  Google Scholar 

  • Rigozzo NR, Liso CS, Tomazello Filho M et al (2012) Solar-terrestrial signal record in tree ring width time series from Brazil. Pure Appl Geophys 169:2181–2191. doi:10.1007/s00024-012-0480-x

    Article  Google Scholar 

  • Robert EMR, Schmitz N, Okelle JA et al (2011) Mangrove growth rings: fact or fiction? Trees 25:49–58. doi:10.1007/s00468-010-0487-9

    Article  Google Scholar 

  • Rodriguez R, Mabres A, Luckman B et al (2005) “El Niño” events recorded in dry-forest species of the lowlands of northwest Peru. Dendrochronologia 22:181–186. doi:10.1016/j.dendro.2005.05.002

    Article  Google Scholar 

  • Roig FA, Jimenez Osornio JJ, Villanueva Diaz J et al (2005) Anatomy of growth rings at the Yucatán Peninsula. Dendrochronologia 22:187–193. doi:10.1016/j.dendro.2005.05.007

    Article  Google Scholar 

  • Rosa SA (2008) Modelos de crescimento de quatro espécies madeireiras de floresta de várzea alta da Amazônia Central por meio de métodos dendrocronológicos. Dissertation, Instituto Nacional de Pesquisas da Amazônia, Universidade Federal do Amazonas

    Google Scholar 

  • Rosa SA, Barbosa ACMC, Junk WJ et al (2017) Growth models based on tree-ring data for the Neotropical tree species Calophyllum brasiliense across different Brazilian wetlands: implications for conservation and management. Trees 31:729–742. doi:10.1007/s00468-016-1503-5

    Article  Google Scholar 

  • Rosero Alvorado J (2009) Dendrocronologia de árvores de mogno, Swietenia macrophylla King., Meliaceae, ocorrentes na floresta tropical Amazônica do Departamento de Madre de Dios, Peru. Dissertation, Escola Superior de Agricultura Luiz de Queiroz

    Google Scholar 

  • Rozendaal DMA, Zuidema PA (2011) Dendroecology in the tropics: a review. Trees 25:3–16. doi:10.1007/s00468-010-0480-3

    Article  Google Scholar 

  • Rozendaal DMA, Soliz-Gamboa CC, Zuidema PA (2010) Timber yield projections for tropical tree species: the influence of fast juvenile growth on timber volume recovery. For Ecol Manage 259:2292–2300. doi:10.1016/j.foreco.2010.02.030

    Article  Google Scholar 

  • Sallo FS, Sanches L, Dias VRM et al (2017) Stem water storage dynamics of Vochysia divergens in a seasonally flooded environment. Agric For Meteorol 232:566–575. doi:10.1016/j.agrformet.2016.10.015

    Article  Google Scholar 

  • Santarosa E, Oliveira JM, Roig FA et al (2007) Crescimento sazonal em Araucaria angustifolia: evidências anatômicas. Rev Bras Biociênc 5(1):618–620

    Google Scholar 

  • Santos Jr A (2006) Aspectos populacionais de Sterculia apetala (Jacq.) Karst (Sterculiaceae) como subsídios ao plano de conservação da arara-azul no Sul do Pantanal, Mato Grosso do Sul, Brasil. Dissertation, Universidade Federal do Mato Grosso d Sul

    Google Scholar 

  • Santos GM, Linares R, Lisi CS et al (2015) Annual growth rings in a sample of Paraná pine (Araucaria angustifolia): toward improving the 14C calibration curve for the Southern Hemisphere. Quat Geochronol 25:96–103. doi:10.1016/j.quageo.2014.10.004

    Article  Google Scholar 

  • Scabin A, Costa F, Schöngart J (2012) The spatial distribution of illegal logging in the Anavilhanas Archipelago (Central Amazonia) and logging impacts on the primary timber species. Environ Conserv 39(1):111–121. doi:10.1017/s0376892911000610

    Article  Google Scholar 

  • Schmitz N, Verheyden A, Kairo JG et al (2007) Successive cambia development in Avicennia marina (Forssk.) Vierh. is not climatically driven in the seasonal climate at Gazi Bay, Kenya. Dendrochronologia 25:87–96. doi:10.1016/j.dendro.2006.08.001

    Article  Google Scholar 

  • Schöngart J (2008) Growth-Oriented Logging (GOL): a new concept towards sustainable forest management in Central Amazonian várzea floodplains. For Ecol Manage 256:46–58. doi:10.1016/j.foreco.2008.03.037

    Article  Google Scholar 

  • Schöngart J (2010) Growth-oriented logging (GOL): the use of species-specific growth informationfor forest management in in central Amazonian floodplain forests. In: Junk WJ, MTF P, Wittmann F et al (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management, Ecological Studies, vol 210. Springer, Dordrecht, Heidelberg, London, New York, pp 437–462

    Chapter  Google Scholar 

  • Schöngart J (2013) Dendroecological studies in tropical forests. Dissertation, Albert-Ludwigs Universität Freiburg, Germany

    Google Scholar 

  • Schöngart J, Piedade MTF, Ludwigshausen S et al (2002) Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J Trop Ecol 18:581–597. doi:10.1017/s0266467402002389

    Article  Google Scholar 

  • Schöngart J, Junk WJ, Piedade MTF et al (2004) Teleconnection between tree growth in the Amazonian floodplains and the El Niño-Southern Oscillation effect. Glob Chang Biol 10:683–692. doi:10.1111/j.1529-8817.2003.00754.x

    Article  Google Scholar 

  • Schöngart J, Piedade MTF, Wittmann F et al (2005) Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests. Oecologia 145:454–461. doi:10.1007/s00442-005-0147-8

    Article  PubMed  Google Scholar 

  • Schöngart J, Wittmann F, Worbes M et al (2007) Management criteria for Ficus insipida Willd. (Moraceae) in Amazonian white-water floodplain forests defined by tree-ring analysis. Ann For Sci 64:657–664. doi:10.1051/forest:2007044

    Article  Google Scholar 

  • Schöngart J, Wittmann F, Worbes M (2010) Biomass and NPP of Central Amazonian floodplain forests. In: Junk WJ, MTF P, Wittmann F et al (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management, Ecological Studies, vol 210. Springer, Dordrecht, Heidelberg, London, New York, pp 347–388

    Chapter  Google Scholar 

  • Schöngart J, Arieira J, Fortes CF et al (2011) Age-related and stand-wise estimates of carbon stocks and sequestration in the aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil. Biogeosciences 8:3407–3421. doi:10.5194/bg-8-3407-2011

    Article  CAS  Google Scholar 

  • Schöngart J, Gribel R, Ferreira da Fonseca-Junior S et al (2015) Age and growth patterns of Brazil nut trees (Bertholletia excelsa Bonpl.) in Amazonia, Brazil. Biotropica 47(5):550–558. doi:10.1111/btp.12243

    Article  Google Scholar 

  • Schulman E (1944) Dendrochronology in Mexico, I. Tree-Ring Bull 10(3):18–24

    Google Scholar 

  • Schulman E (1956) Dendroclimatic changes in semiarid America. University of Arizona Press, Tuscon

    Google Scholar 

  • Schweingruber FH (1983) Der Jahrring. Standort, Methodik, Zeit und Klima in der Dendrochronologie. Verlag Paul Haupt, Stuttgart, Bern

    Google Scholar 

  • Schweingruber FH, Wirth C (2009) Old trees and the meaning of ‘old’. In: Wirth C, Gleixner G, Heimann M (eds) Old-growth forests. Springer, Berlin, pp 35–54

    Chapter  Google Scholar 

  • Sebbenn AM, Degen B, Azevedo VCR et al (2008) Modelling the long-term impacts of selective logging on genetic diversity and demographic structure of four tropical tree species in the Amazon forest. For Ecol Manage 254:335–349. doi:10.1016/j.foreco.2007.08.009

    Article  Google Scholar 

  • Seitz RA, Kanninen M (1989) Tree ring analysis of Araucaria angustifolia in Southern Brazil: preliminary results. IAWA Bull 10(2):170–174. doi:10.1163/22941932-90000485

    Article  Google Scholar 

  • Silva LB (2006) Variação na estrutura da madeira de quatro espécies da Caatinga nordestina e seu potencial para o desenvolvimento sustentável. Dissertation, Universidade Estadual de Feira de Santana

    Google Scholar 

  • Silva MS, Santos FAR, Callado CH et al (2016) Growth rings in woody species of Ombrophilous Dense Forest: occurrence, anatomical features and ecological considerations. Braz J Bot. doi:10.1007/s40415-016-0313-8

  • Slik JWF, Arroyo-Rodríguez V, Aiba SI et al (2015) An estimate of the number of tropical tree species. PNAS 112:7472–7477. doi:10.1073/pnas.1423147112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Solíz C, Villalba R, Argollo J et al (2009) Spatio-temporal variations in Polylepis tarapacana radial growth across the Bolivian Altiplano during the 20th century. Palaeogeogr Palaeocl 281:296–308. doi:10.1016/j.palaeo.2008.07.025

    Article  Google Scholar 

  • Soliz-Gamboa CC, Rozendaal DMA, Ceccantini G et al (2011) Evaluating the annual nature of juvenile rings in Bolivian tropical rainforest trees. Trees 25:17–27. doi:10.1007/s00468-010-0468-z

    Article  Google Scholar 

  • Souza BT, Estrada GCD, Soares MLF et al (2016) Occurrence of annual growth rings in Rhizophora mangle in a region with low climate seasonality. An Acad Bras Cienc 88(1):517–525. doi:10.1590/0001-3765201620150009

    Article  PubMed  Google Scholar 

  • Spannl S, Homeier J, Bräuning A (2016) Nutrient-induced modifications of wood anatomical traits of Alchornea lojaensis (Euphorbiaceae). Front Earth Sci 4:50. doi:10.3389/feart.2016.00050

    Article  Google Scholar 

  • Speer JH, Orvis KH, Grissino-Mayer HD et al (2004) Assessing the dendrochronological potential of Pinus occidentalis Swartz in the Cordillera Central of the Dominican Republic. The Holocene 14:563–569. doi:10.1191/0959683604hl732rp

    Article  Google Scholar 

  • Stahle DW (1996) Tree rings and ancient forest relics. Arnoldia 56:2–10

    Google Scholar 

  • Stahle DW, Villanueva J, Cleaveland MK et al (2000) Recent tree-ring research in Mexico. In: Roig FA (ed) Dendrocronología en América Latina. EDIUNC, Mendoza, pp 285–306

    Google Scholar 

  • Stahle DW, Villanueva Diaz J, Burnette DJ et al (2011) Major Mesoamerican droughts of the past millennium. Geophys Res Lett 38:L05703. doi:10.1029/2010gl046472

    Article  Google Scholar 

  • Stahle DW, Burnette DJ, Villanueva J et al (2012) Tree-ring analysis of ancient baldcypress trees and subfossil wood. Quat Sci Rev 34:1–15. doi:10.1016/j.quascirev.2011.11.005

    Article  Google Scholar 

  • Stahle DW, Griffin RD, Meko DM et al (2013) The ancient blue oak woodlands of California: longevity and hydroclimatic history. Earth Interact 17:12. doi:10.1175/2013ei000518.1

    Article  Google Scholar 

  • Stahle DW, Cook ER, Burnette DJ et al (2016) The Mexican Drought Atlas: tree-ring reconstructions of the soil moisture balance during the late pre-Hispanic, colonial, and modern eras. Quat Sci Rev 149:34–60. doi:10.1016/j.quascirev.2016.06.018

    Article  Google Scholar 

  • Steinbrenner MKA (1989) Altersbestimmung mit dendrochronologischen Methoden an Araucaria angustifolia (Bert.) O. Ktze. in einem südbrasiliansichen Naturwald. Dissertation, Albert-Ludwigs-Universität Freiburg

    Google Scholar 

  • Studhalter RA, Glock WS, Agerter SA (1963) Tree growth, some historical chapters in the study of diameter growth. Bot Rev 29:245–365. doi:10.1007/bf02860823

    Article  Google Scholar 

  • Stuiver M, Rebello AL, White JC et al (1981) Isotopic indicators of age/growth in tropical trees. In: Bormann FH, Berlyn G (eds) Age and growth rate of tropical trees: new directions for research. Yale University Press, New Haven, Connecticut, pp 75–82

    Google Scholar 

  • Therrell MD, Stahle DW, Cleaveland MK (2002) Warm season tree growth and precipitation over Mexico. J Geophys Res 107(D14):4205. doi:10.1029/2001jd000851

    Article  Google Scholar 

  • Tomazello Filho M, Lisi CS, Hansen N et al (2004) Anatomical features of increment zones in different tree species in the State of São Paulo, Brazil. Sci For 66:46–55

    Google Scholar 

  • Tschinkel HM (1966) Annual growth rings in Cordia alliodora. Turrialba 16:73–80

    Google Scholar 

  • Tsuchiya A (1994) Relationships between wood volume increments by stem analysis and water balance in the semi-arid interior of northeastern Brazil. Mem Fac Integrated Arts and Sci, Hiroshima Univ IV(20):71–80

    Google Scholar 

  • Ursprung A (1904) Zur Periodicität des Dickenwachsthums in den Tropen. Botanische Zeitung X:189–210

    Google Scholar 

  • Van der Sleen P, Groenendijk P, Vlam M et al (2014) No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nat Geosci 8:24–28. doi:10.1038/ngeo2313

    Article  CAS  Google Scholar 

  • Van Gardingen PR, Valle D, Thompson I (2006) Evaluation of yield regulation options for primary forest in Tapajós National Forest, Brazil. For Ecol Manag 231:184–195. doi:10.1016/j.foreco.2006.05.047

    Article  Google Scholar 

  • Vasconcellos TJ, Costa MS, Barros CF et al (2016) Growth dynamics of Centrolobium robustum (Vell.) Mart. ex Benth. (Leguminosae-Papilionoideae) in the Atlantic Forest. Braz J Bot 39:925–934. doi:10.1007/s40415-016-0292-9

    Article  Google Scholar 

  • Venter O, Sanderson EW, Magrach A et al (2016) Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat Commun 7:12558. doi:10.1038/ncomms12558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vetter RE (1995) Untersuchungen über Zuwachsrhythmen an tropischen Bäumen in Amazonien. Dissertation, Albert-Ludwigs Universität Freiburg

    Google Scholar 

  • Vetter RE, Botosso PC (1989) Remarks on age and growth rate determination of Amazonian trees. IAWA Bull 10(2):133–145. doi:10.1163/22941932-90000481

    Article  Google Scholar 

  • Vidal E, Johns J, Gerwing JJ et al (1997) Vine management for reduced-impact logging in eastern Amazonia. For Ecol Manag 98:105–114. doi:10.1016/s0378-1127(97)00051-0

    Article  Google Scholar 

  • Vieira S, Trumbore S, Camargo PB et al (2005) Slow growth rate of Amazonian trees: consequences for carbon cycling. PNAS 102:18502–18507. doi:10.1073/pnas.0505966102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villalba R, Boninsegna JA, Holmes RL (1985) Cedrela angustifolia and Juglans australis: two new tropical species useful in dendrochronology. Tree-Ring Bull 45:25–35

    Google Scholar 

  • Villalba R, Grau HR, Boninsegna JA et al (1998) Tree-ring evidence for long term precipitation changes in subtropical South America. Int J Climatol 18:1463–1478. doi:10.1002/(sici)1097-0088(19981115)18:13<1463::aid-joc324>3.3.co;2-1

    Article  Google Scholar 

  • Vogado NO (2014) Fenologia e dendrocronologia de duas espécies de Fabaceae em uma área de cerrado no Sudeste do Brasil. Dissertation, Universidade Estadual Paulista

    Google Scholar 

  • Volland F, Pucha D, Bräuning A (2016) Hydro-climatic variability in southern Ecuador reflected by tree-ring oxygen isotopes. Erdkunde 1:69–82. doi:10.3112/erdkunde.2016.01.05

    Google Scholar 

  • Volland-Voigt F, Bräuning A, Ganzhi O et al (2011) Radial stem variations of Tabebuia chrysantha (Bignoniaceae) in different tropical forest ecosystems of southern Ecuador. Trees 25:39–48. doi:10.1007/s00468-010-0461-6

    Article  Google Scholar 

  • Westbrook JA, Guilderson TP, Colinvaux PA (2006) Annual growth rings in a sample of Hymenaea courbaril. IAWA J 27(2):193–197. doi:10.1163/22941932-90000148

    Article  Google Scholar 

  • Whitmore TC (1975) Tropical rain forests of the far east. Clarendon Press, Oxford

    Google Scholar 

  • Whitmore TC (1993) Tropische Regenwälder: Eine Einführung. Spektrum Akad. Verlag, Heidelberg, Berlin, New York

    Google Scholar 

  • Wilczek A, Miodek A, Gizińska A (2014) Terminal xylem and initial parenchyma in anatomical investigations–a review of definitions. Opole Sci Soc Nat J 47:31–44

    Google Scholar 

  • Worbes M (1984) Periodische Zuwachszonen an Bäumen zentralamazonischer Überschwemmungswälder. Naturwissenschaften 71:157–158. doi:10.1007/bf01137783

    Article  Google Scholar 

  • Worbes M (1985) Structural and other adaptations to longterm flooding by trees in Central Amazonia. Amazoniana 9:459–484

    Google Scholar 

  • Worbes M (1986) Lebensbedingungen und Holzwachstum in zentralamazonischen Überschwemmungswäldern. Erich Goltze, Göttingen. Scripta Geobot 17:1–112

    Google Scholar 

  • Worbes M (1988) Variety in structure of annual growth zones in Tabebuia barbata (E. Mey.) Sandw., Bignoniaceae, a tropical tree species from Central Amazonian inundation forests. Dendrochronologia 6:71–89

    Google Scholar 

  • Worbes M (1989) Growth rings, increment and age of tree in inundation forest, savannas and a mountain forest in the Neotropics. IAWA Bull 10(2):109–122. doi:10.1163/22941932-90000479

    Article  Google Scholar 

  • Worbes M (1995) How to measure growth dynamics in tropical trees—A review. IAWA J 16:337–351. doi:10.1163/22941932-90001424

    Article  Google Scholar 

  • Worbes M (1996) Rhythmisches Wachstum und anatomisch-morphologische Anpassungen an Lebensstrategien von Bäumen in zentralamazonischen Überschwemmungswäldern. Mitt Dtsch Dendrol Ges 82:155–172

    Google Scholar 

  • Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J Ecol 87:391–403. doi:10.1046/j.1365-2745.1999.00361.x

    Article  Google Scholar 

  • Worbes M (2002) One hundred years of tree ring research in the tropics—a brief history and an outlook to future challenges. Dendrochronologia 20(1-2):217–231. doi:10.1078/1125-7865-00018

    Article  Google Scholar 

  • Worbes M (1994) Grundlagen und Anwendungen der Jahresringforschung in den Tropen Dissertation, Universität Hamburg

    Google Scholar 

  • Worbes M, Fichtler E (2010) Wood anatomy and tree-ring structure and their importance for tropical dendrochronology. In: Junk WJ, MTF P, Wittmann F et al (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management, Ecological Studies, vol 210. Springer, Dordrecht, Heidelberg, London, New York, pp 329–346

    Chapter  Google Scholar 

  • Worbes M, Junk WJ (1989) Dating tropical trees by means of 14C from bomb tests. Ecology 70(2):503–507. doi:10.2307/1937554

    Article  Google Scholar 

  • Worbes M, Junk WJ (1999) How old are tropical trees? The persistence of a myth. IAWA J 20(3):255–260. doi:10.1163/22941932-90000689

    Article  Google Scholar 

  • Worbes M, Raschke N (2012) Carbon allocation in a Costa Rican dry forest derived from tree ring analysis. Dendrochronologia 30:231–238. doi:10.1016/j.dendro.2011.11.001

    Article  Google Scholar 

  • Worbes M, Klosa D, Lewark S (1995) Rohdichtestruktur von Jahresringen tropischer Hölzer aus zentralamazonischen Überschwemmungswäldern. Holz Roh Werkst 53:63–67. doi:10.1007/bf02716390

    Article  Google Scholar 

  • Wyatt-Smith J (1995) Manual of Malayan Silviculture for Inland Forests, Malayan Forest Record, vol 2, 2nd edn. Forest Research Institute Malaysia, Kuala Lumpur

    Google Scholar 

  • Zuidema PA, Brienen RJW, Schöngart J (2012) Tropical forest warming: looking backwards for more insights. Trends Ecol Evol 27:193–194. doi:10.1016/j.tree.2011.12.007

    Article  PubMed  Google Scholar 

  • Zumaeta LEC (2009) Dendrocronología en árboles de Tornillo, Cedrelinga cateniformis Ducke (Fabaceae), del Centro de Investigaciones Jenaro Herrera en el noreste de la Amazonia, Región Loreto–Perú. Dissertation, Universidad Nacional Agraria la Molina

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Schöngart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schöngart, J., Bräuning, A., Barbosa, A.C.M.C., Lisi, C.S., de Oliveira, J.M. (2017). Dendroecological Studies in the Neotropics: History, Status and Future Challenges. In: Amoroso, M., Daniels, L., Baker, P., Camarero, J. (eds) Dendroecology. Ecological Studies, vol 231. Springer, Cham. https://doi.org/10.1007/978-3-319-61669-8_3

Download citation

Publish with us

Policies and ethics