Skip to main content

Halogens on and Within the Ocean Worlds of the Outer Solar System

  • Chapter
  • First Online:
The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes

Part of the book series: Springer Geochemistry ((SPRIGEO))

Abstract

Life as we know it requires liquid water, a suite of approximately fifty-four elements from the periodic table, and some form of light or chemical energy to power life. The search for liquid water in our solar system has revealed that several moons of the outer solar system harbor oceans beneath their icy shells. Halogen salts serve as a key indicator of whether or not these liquid water environments could satisfy the latter two requirements for life. The presence of salts within these oceans is, and can be, an indicator of water-rock interactions between liquid water and silicate, halogen-rich, seafloors. In some cases, seafloor cycling within these moons may be sufficient to drive low-, or possibly even high-temperature hydrothermalism. Here I review the current state of knowledge of these oceans beyond Earth and provide both empirical and modelling constraints on halogens within these environments. Past, present, and future spacecraft missions to these worlds are described, and the implications for future discoveries of astrobiological importance is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agnor CB, Hamilton DP (2006) Neptune’s capture of its moon Triton in a binary-planet gravitational encounter. Nature 441(7090):192–194

    Article  Google Scholar 

  • Allen RO, Mason B (1973) Minor and trace elements in some meteoritic minerals. Geochim Cosmochim Acta 37(6):1435–1456

    Article  Google Scholar 

  • Anderson JD, Schubert G, Jacobson RA et al (1998) Europa’s differentiated internal structure: inferences from four Galileo encounters. Science 281(5385):2019–2022

    Article  Google Scholar 

  • Baland RM, Tobie G, Lefèvre A, Van Hoolst T (2014) Titan’s internal structure inferred from its gravity field, shape, and rotation state. Icarus 237:29–41

    Article  Google Scholar 

  • Bouquet A, Mousis O, Waite JH, Picaud S (2015) Possible evidence for a methane source in Enceladus’ ocean. Geophys Res Lett 42(5):1334–1339

    Article  Google Scholar 

  • Brearley AJ, Jones RH (2018) Halogens in chondritic meteorites. In: Harlov DE, Aranovitch L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, pp 871–958

    Google Scholar 

  • Brilliantov NV, Schmidt J, Spahn F (2008) Geysers of Enceladus: quantitative analysis of qualitative models. Planet Space Sci 56(12):1596–1606

    Article  Google Scholar 

  • Brown ME (2001) Potassium in Europa’s atmosphere. Icarus 151(2):190–195

    Article  Google Scholar 

  • Brown ME, Hand KP (2013) Salts and radiation products on the surface of Europa. Astron J 145:110 (7 pp)

    Google Scholar 

  • Buratti BJ, Hicks MD, Davies A (2005) Spectrophotometry of the small satellites of Saturn and their relationship to Iapetus, Phoebe, and Hyperion. Icarus 175(2):490–495

    Article  Google Scholar 

  • Canup RM, Ward WR (2002) Formation of the Galilean satellites: conditions of accretion. Astron J 124(6):3404–3423

    Article  Google Scholar 

  • Carlson RW, Johnson R, Anderson M (1999) Sulfuric acid on europa and the radiolytic sulfur cycle. Science 286:97–99

    Article  Google Scholar 

  • Carlson RW, Kargel JS, Doute S, Soderblom LA, Dalton JB (2010) Io’s surface composition. In: Lopes RC, Spencer JR (eds) Io after Galileo. Praxis-Springer, Berlin, pp 193–229

    Google Scholar 

  • Chyba CF, Hand KP (2005) Astrobiology: the study of the living universe. Ann Rev Astron Astrophys 43:31–74

    Article  Google Scholar 

  • Cooper JF, Johnson RE, Mauk BH et al (2001) Energetic ion and electron irradiation of the icy Galilean satellites. Icarus 149(1):133–159

    Article  Google Scholar 

  • Cordier D, Mousis O, Lunine JI et al (2009) An estimate of the chemical composition of Titan’s lakes. Astrophys J Lett 707(2):L128

    Article  Google Scholar 

  • Dalton JB, Prieto-Ballesteros O, Kargel JS et al (2005) Spectral comparison of heavily hydrated salts with disrupted terrains on Europa. Icarus 177(2):472–490

    Article  Google Scholar 

  • Elderfield H, Schultz A (1996) Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Ann Rev Earth Planet Sci 24:191–224

    Article  Google Scholar 

  • Fanale FP, Li YH, De Carlo E et al (2001) An experimental estimate of Europa’s “ocean” composition independent of Galileo orbital remote sensing. J Geophys Res 106:14595–14600

    Article  Google Scholar 

  • Farinella P, Paolicchi P, Strom RG et al (1990) The fate of Hyperion fragments. Icarus 83:186–204

    Article  Google Scholar 

  • Fortes AD, Choukroun M (2010) Phase behavior of ices and hydrates. Space Sci Rev 153:185–218

    Article  Google Scholar 

  • Geissler PE (2003) Volcanic activity on Io during the Galileo era. Ann Rev Earth Planet Sci 31(1):175–211

    Google Scholar 

  • Glein CR, Shock EL (2010) Sodium chloride as a geophysical probe of a subsurface ocean on Enceladus. Geophys Res Lett 37:L09204. https://doi.org/10.1029/2010GL042446

    Article  Google Scholar 

  • Glein CR, Zolotov MY, Shock EL (2008) The oxidation state of hydrothermal systems on early Enceladus. Icarus 197:157–163

    Article  Google Scholar 

  • Glein CR, Baross JA, Waite JH (2015) The pH of Enceladus’ ocean. Geochim Cosmochim Acta 162:202–219

    Article  Google Scholar 

  • Grundy WM, Binzel RP, Buratti BJ et al (2016) Surface compositions across Pluto and Charon. Science 351(6279):aad9189

    Google Scholar 

  • Hand KP, Chyba CF (2007) Empirical constraints on the salinity of the Europan ocean and implications for a thin ice shell. Icarus 189(2):424–438

    Article  Google Scholar 

  • Hand KP, Carlson RW (2015) Europa’s surface color indicates an ocean rich with sodium chloride. Geophys Res Lett 42:3174–3178

    Article  Google Scholar 

  • Hand KP, Chyba CF, Priscu JC et al (2009) Astrobiology and the potential for life on Europa. In: Pappalardo RT, McKinnon WB, Khurana KK (eds) Europa. University of Arizona Press, Tucson, p 589

    Google Scholar 

  • Hedman MM, Gosmeyer CM, Nicholson PD et al (2013) An observed correlation between plume activity and tidal stresses on Enceladus. Nature 500(7461):182–184

    Article  Google Scholar 

  • Howett CJA, Spencer JR, Pearl J, Segura M (2011) High heat flow from Enceladus’ south polar region measured using 10–600 cm−1 Cassini/CIRS data. J Geophys Res: Planets 116(E3)

    Google Scholar 

  • Hsu HW, Postberg F, Sekine Y et al (2015) Ongoing hydrothermal activities within Enceladus. Nature 519(7542):207–210

    Article  Google Scholar 

  • Hussmann H, Sohl F, Spohn T (2006) Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects. Icarus 185(1):258–273

    Article  Google Scholar 

  • Iess L, Stevenson DJ, Parisi M et al (2014) The gravity field and interior structure of Enceladus. Science 344(6179):78–80

    Article  Google Scholar 

  • Johnson RE, Leblanc F, Yakshinskiy BV, Madey TE (2002) Energy distributions for desorption of sodium and potassium from ice: the Na/K ratio at Europa. Icarus 156(1):136–142

    Article  Google Scholar 

  • Kargel JS (1992) Ammonia-water volcanism on icy satellites: phase relations at 1 atmosphere. Icarus 100:556–574

    Article  Google Scholar 

  • Kargel JS, Consolmagno GJ (1996) Magnetic fields and the detectability of brine oceans in Jupiter’s icy satellites. Paper presented at lunar and planetary science XXVII, Houston, 643–644

    Google Scholar 

  • Kargel JS, Delmelle P, Nash DB (1999) Volcanogenic sulfur on Earth and Io: composition and spectroscopy. Icarus 142:249–280

    Article  Google Scholar 

  • Kargel JS, Kaye JZ, Head JWI et al (2000) Europa’s crust and ocean: origin, composition, and the prospects for life. Icarus 148:226–265

    Article  Google Scholar 

  • Khurana KK, Dougherty M, Russell C, Leisner J (2007) Mass loading of Saturn’s magnetosphere near Enceladus. J Geophys Res 112:A08203. https://doi.org/10.1029/2006JA012110

    Article  Google Scholar 

  • Khurana KK, Jia X, Kivelson MG et al (2011) Evidence of a global magma ocean in Io’s interior. Science 332(6034):1186–1189

    Article  Google Scholar 

  • Kirk RL, Soderblom LA, Brown RH et al (1995) Triton’s plumes: discovery, characteristics, and models. In: Cruikshank DP, Matthews MS, Schumann AM (eds) Neptune and Triton, vol 1. University of Arizona Press, Tucson, pp 949–989

    Google Scholar 

  • Kivelson MG, Khurana KK, Russell CT et al (2000) Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science 289(5483):1340–1343

    Article  Google Scholar 

  • Kuiper GP (1957) Infrared observations of planets and satellites. Astron J 62:245–245

    Google Scholar 

  • Küppers M, O’Rourke L, Bockelée-Morvan D et al (2014) Localized sources of water vapour on the dwarf planet Ceres. Nature 505(7484):525–527

    Article  Google Scholar 

  • Lellouch E, Paubert G, Moses JI et al (2003) Volcanically emitted sodium chloride as a source for Io’s neutral clouds and plasma torus. Nature 421(6918):45–47

    Article  Google Scholar 

  • Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591(2):1220–1247

    Article  Google Scholar 

  • Lodders K (2010) Solar system abundances of the elements. Principles and perspectives in cosmochemistry. Springer, Berlin, pp 379–417

    Google Scholar 

  • Lodders K, Fegley B Jr (1998) The planetary scientist’s companion. Oxford University Press, New York, p 371

    Google Scholar 

  • Lopes RC, Mitchell KL, Stofan ER et al (2007) Cryovolcanic features on Titan’s surface as revealed by the Cassini Titan Radar Mapper. Icarus 186(2):395–412

    Article  Google Scholar 

  • Lopes RC, Kirk RL, Mitchell KL et al (2013) Cryovolcanism on Titan: new results from Cassini RADAR and VIMS. J Geophys Res: Planets 118:1–20

    Google Scholar 

  • Lorenz RD, Stiles BW, Kirk RL et al (2008) Titan’s rotation reveals an internal ocean and changing zonal winds. Science 319:1649–1651

    Article  Google Scholar 

  • Lunine JI, Lorenz RD (2009) Rivers, lakes, dunes, and rain: crustal processes in Titan’s methane cycle. Ann Rev Earth Planet Sci 37:299–320

    Article  Google Scholar 

  • Mason B, Graham AL (1970) Minor and trace elements in meteoritic minerals. Smithsonian Contrib Earth Sci 3:1–17

    Google Scholar 

  • McCord TA, Carlson RW, Smythe WD, Hansen GB, Clark RN, Hibbitts CA, Fanale FP, Granahan JC, Segura M, Matson DL, Johnson TV (1997) Organics and other molecules in the surfaces of Callisto and Ganymede. Science  278(5336): 271–275

    Google Scholar 

  • McCord TB, Hansen GB, Matson DL et al (1999) Hydrated salt minerals on Europa’s surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation. J Geophys Res 104:11827–11851

    Article  Google Scholar 

  • McCord TB, Hansen GB, Hibbitts CA (2001) Hydrated salt minerals on Ganymede’s surface: evidence of an ocean below. Science 292(5521):1523–1525

    Google Scholar 

  • McEwen AS, Keszthelyi L, Spencer JR et al (1998) High-temperature silicate volcanism on Jupiter’s moon Io. Science 281(5373):87–90

    Article  Google Scholar 

  • McKinnon WB (1984) On the origin of Triton and Pluto. Nature 311:355–358

    Article  Google Scholar 

  • McKinnon WB, Mueller S (1989) The density of Triton: a prediction. Geophys Res Lett 16(6):591–594

    Article  Google Scholar 

  • Marion G, Kargel JS, Catling DC, Lunine JI (2012) Modelling ammonia-ammonium aqueous chemistries in the Solar System’s icy bodies. Icarus 22:932–946

    Article  Google Scholar 

  • Melosh HJ, Ekholm AG, Showman AP, Lorenz RD (2004) The temperature of Europa’s subsurface water ocean. Icarus 168(2):498–502

    Article  Google Scholar 

  • Mitri G, Showman AP, Lunine JI, Lorenz RD (2007) Hydrocarbon lakes on Titan. Icarus 186(2):385–394

    Article  Google Scholar 

  • Mitri G, Meriggiola R, Hayes A et al (2014) Shape, topography, gravity anomalies and tidal deformation of Titan. Icarus 236:169–177

    Article  Google Scholar 

  • Monnard P-A, Apel CL, Kanavarioti A, Deamer DW (2002) Influence of ionic solutes on self-assembly and polymerization processes related to early forms of life: implications for a prebiotic aqueous medium. Astrobiology 2:213–219

    Article  Google Scholar 

  • Moore JM, McKinnon WB, Spencer JR et al (2016) The geology of Pluto and Charon through the eyes of New Horizons. Science 351(6279):1284–1293

    Article  Google Scholar 

  • Moroz VI (1966) Infrared spectrophotometry of the Moon and the Galilean satellites of Jupiter. Soviet Astron 9:999

    Google Scholar 

  • Mottl MJ, Wheat CG (1994) Hydrothermal circulation through mid-ocean ridge flanks: fluxes of heat and magnesium. Geochim Cosmochim Acta 58(10):2225–2237

    Article  Google Scholar 

  • Nelson RM, Nash DB (1979) Spectral reflectance change and luminescence of selected salts during 2–10 KeV proton bombardment: implications for Io. Icarus 39(2):277–285

    Article  Google Scholar 

  • Niemann HB, Atreya SK, Bauer SJ et al (2005) The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438(7069):779–784

    Article  Google Scholar 

  • Oren A (1994) The ecology of the extremely halophilic archea. FEMS Microbiol Rev 13:415–440

    Article  Google Scholar 

  • Oren A (2001) The bioenergetic basis for the decrease in metabolic diversity at increasing salt concentrations: implications for the functioning of salt lake ecosystems. Hydrobiologia 466:61–72

    Article  Google Scholar 

  • Pilcher CB, Ridgway ST, McCord TB (1972) Galilean satellites: identification of water frost. Science 178(4065):1087–1089

    Article  Google Scholar 

  • Poirier JP, Boloh L, Chambon P (1983) Tidal dissipation in small viscoelastic ice moons: the case of Enceladus. Icarus 55(2): 218–230

    Google Scholar 

  • Pollack JB, Consolmagno G (1984) Origin and evolution of the Saturn system. In: Gehrels T, Matthews MS (eds) Saturn. University of Arizona Press, Tucson, p 811

    Google Scholar 

  • Pollack JB, Lunine JI, Tittemore WC (1991) Origin of the Uranian satellites. In: Bergstralh JT, Miner ED, Matthews MS (eds) Uranus. University of Arizona Press, Tucson, p 469

    Google Scholar 

  • Porco C, Helfenstein P, Thomas PC et al (2006) Cassini observes the active south pole of Enceladus. Science 311(5766):1393–1401. https://doi.org/10.1126/science.1123013

    Article  Google Scholar 

  • Porco C, DiNino D, Nimmo F (2014) How the Geysers, tidal stresses, and thermal emission across the South Polar Terrain of Enceladus are related. Astron J 148(3):45

    Article  Google Scholar 

  • Postberg F, Kempf S, Schmidt J et al (2009) Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459(7250):1098–1101

    Article  Google Scholar 

  • Postberg F, Schmidt J, Hillier J, Kempf S, Srama R (2011) A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474(7353):620–622

    Article  Google Scholar 

  • Prinn RG, Fegley B (1981) Kinetic inhibition of CO and N2 reduction in circumplanetary nebulae: implications for satellite composition. Astrophys J 249:308–317

    Article  Google Scholar 

  • Priscu JC, Hand KP (2012) Microbial habitability of icy worlds. Microbe 7(4):167–172

    Google Scholar 

  • Robuchon G, Nimmo F (2011) Thermal evolution of Pluto and implications for surface tectonics and a subsurface ocean. Icarus 216(2):426–439

    Article  Google Scholar 

  • Ross MN, Schubert G (1989) Viscoelastic models of tidal heating in Enceladus. Icarus 78(1):90–101

    Google Scholar 

  • Saur J, Duling S, Roth L et al (2015) The search for a subsurface ocean in Ganymede with Hubble Space Telescope observations of its auroral ovals. J Geophys Res Space Phys 120(3):1715–1737

    Article  Google Scholar 

  • Schmidt J, Brilliantov N, Spahn F, Kempf S (2008) Slow dust in Enceladus’ plume from condensation and wall collisions in tiger stripe fractures. Nature 451(7179):685–688

    Article  Google Scholar 

  • Seinen J, Groote JC, Weerkamp JR et al (1994) Radiation damage in NaCl. II. The early stage of F-center aggregation. Phys Rev B 50(14):9787

    Google Scholar 

  • Squyres SW, Reynolds RT, Cassen PM, Peale SJ (1983) The evolution of Enceladus. Icarus 53(2):319–331

    Google Scholar 

  • Stern SA, Bagenal F, Ennico K et al (2015) The Pluto system: initial results from its exploration by New Horizons. Science 350(6258):aad1815

    Google Scholar 

  • Tajeddine R, Rambaux N, Lainey V et al (2014) Constraints on Mimas’ interior from Cassini ISS libration measurements. Science 346(6207):322–324

    Article  Google Scholar 

  • Tan SP, Adidharma H, Kargel JS, Marion GM (2013) Equation of state for solid solution–liquid–vapor equilibria at cryogenic conditions. Fluid Phase Equilib 360:320–331

    Article  Google Scholar 

  • Tan SP, Kargel JS, Jennings DE et al (2015) Titan’s liquids: exotic behavior and its implications on global fluid circulation. Icarus 250:64–75

    Article  Google Scholar 

  • Vance S, Bouffard M, Choukroun M, Sotin C (2014) Ganymede’s internal structure including thermodynamics of magnesium sulfate oceans in contact with ice. Planet Space Sci 96:62–70

    Article  Google Scholar 

  • Veeder GJ, Matson DL, Johnson TV et al (1994) Io’s heat flow from infrared radiometry: 1983–1993. J Geophys Res Planet 99(E8):17095–17162

    Google Scholar 

  • Wackett LP, Dodge AG, Ellis LB (2004) Microbial genomics and the periodic table. Am Soc Microbiol 70(2):647–655

    Google Scholar 

  • Waite JH, Lewis WS, Kasprzak WT, Anicich VG, Block BP, Cravens TE, Fletcher GG, Ip W-H, Luhmann JG, Mcnutt RL, Niemann HB, Parejko JK, Richards JE, Thorpe RL, Walter EM, Yelle RV (2004) The Cassini ion and neutral mass spectrometer (INMS) investigation. Space Sci Rev 114(1):113–231

    Google Scholar 

  • Waite JH Jr, Combi MR, Ip WH et al (2006) Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 311(5766):1419–1422

    Article  Google Scholar 

  • Waite JH Jr, Lewis WS, Magee BA et al (2009) Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature 460(7254):487–490

    Article  Google Scholar 

  • Weerkamp JRW, Groote JC, Seinen J, Den Hartog HW (1994) Radiation damage in NaCl. I. Optical-absorption experiments on heavily irradiated samples. Phys Rev B 50(14):9781

    Google Scholar 

  • Williams DA, Wilson AH, Greeley R (2000) A komatiite analog to potential ultramafic materials on Io. J Geophys Res Planet 105(E1):1671–1684

    Google Scholar 

  • Zimmer C, Khurana KK, Kivelson MG (2000) Subsurface oceans on Europa and Callisto: constraints from Galileo magnetometer observations. Icarus 147:329–347

    Article  Google Scholar 

  • Zolotov MY (2007) An oceanic composition on early and today’s Enceladus. Geophys Res Lett 34:L23203

    Article  Google Scholar 

  • Zolotov MY (2008) Oceanic composition on Europa: constraints from mineral solubilities. Paper presented at lunar and planetary science XXXIX, Houston, 39:2349

    Google Scholar 

  • Zolotov MY (2012) Aqueous fluid composition in CI chondritic materials: chemical equilibrium assessments in closed systems. Icarus 220(2):713–729

    Google Scholar 

  • Zolotov MY, Kargel JS (2009) On the chemical composition of Europa’s icy shell, ocean, and underlying rocks. In: Pappalardo RT, McKinnon WB, Khurana KK (eds) Europa. University of Arizona Press, Tucson, pp 431–458

    Google Scholar 

  • Zolotov MY, Mironenko MV (2007) Hydrogen chloride as a source of acid fluids in parent bodies of chondrites. Lunar and planetary science conference, vol 38

    Google Scholar 

  • Zolotov MY, Shock EL (2001) Composition and stability of salts on the surface of Europa and their oceanic origin. J Geophys Res 106:32815–32827

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges support from the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and funded in part through the internal Research and Technology Development program. He would also like to thank Jeff Kargel, Christopher Glein, and Mischa Zolotov for very useful reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin P. Hand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hand, K.P. (2018). Halogens on and Within the Ocean Worlds of the Outer Solar System. In: Harlov, D., Aranovich, L. (eds) The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. Springer Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-61667-4_17

Download citation

Publish with us

Policies and ethics