Skip to main content

Part of the book series: Springer Geochemistry ((SPRIGEO))

Abstract

The present chapter focuses on the still poorly known sources, distribution and fractionation of halogens in the oceanic and continental lithospheric mantle in intraplate and extensional tectonic settings, and in the deep cratonic sub-continental mantle that hosts diamonds and kimberlites. In the lithospheric mantle, halogens are considered to be mainly stored in volatile-bearing metasomatic minerals, such as apatite, amphibole, and phlogopite . However, recent studies demonstrate that the nominally anhydrous minerals , incorporating measurable amounts of water as hydroxyl, are important storage sites for F, and to a lesser extent Cl. The halogen contents of minerals influence their stability in the lithospheric mantle, and they might be responsible for halogen enrichment and trace element signatures in some primitive basaltic melts . Over the last 20 years a growing body of evidence, based mainly on fluid inclusion data, has confirmed that relatively high amounts of halogens can be dissolved in aqueous-carbonic fluids, which may be locally immiscible, and in hydrous carbonate melts which ascend through the lithospheric mantle in intraplate and extensional settings. Metasomatic halide-bearing fluids are important carriers of incompatible trace elements (e.g., LILE and LREE). The highest halogen concentrations in fluids are observed in inclusions in fibrous and cloudy diamondsfrom the deep cratonic lithosphere. It is now well established that diamond-forming fluids consist of complex silicate-carbonate-Cl-aqueous mixtures formed by mixing of a hydrous-silicic fluid (rich in SiO2, Al2O3, and K2O), carbonatitic fluid (containing high concentrations of carbonate, CaO, FeO, MgO, and variable Na2O and K2O), and saline aqueous fluid (rich in Cl, K, and Na) end-member types. Halogen enrichment in lithospheric mantle fluids, both in the vicinity of, and away from, subduction zones, suggests a dynamic balance in the halogen geochemical cycle, which is ruled by recycling of surface halogens and mantle fractionation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agrinier P, Mével C, Bosch D, Javoy M (1993) Metasomatic hydrous fluids in amphibole peridotites from Zabargad Island (Red Sea). Earth Planet Sci Lett 120:187–205

    Article  Google Scholar 

  • Aiuppa A, Baker DR, Webster JD (2009) Halogens in volcanic systems. Chem Geol 263:1–18

    Article  Google Scholar 

  • Andersen T, Neumann ER (2001) Fluid inclusions in mantle xenoliths. Lithos 55:301–320

    Article  Google Scholar 

  • Andersen T, O’Reilly SY, Griffin WL (1984) The trapped fluid phase in upper mantle xenoliths from Victoria, Australia: implications for mantle metasomatism. Contrib Mineral Petrol 88:72–85

    Article  Google Scholar 

  • Aoki K (1975) Origin of phlogopite and potassic-richterite bearing peridotite xenoliths from South Africa. Contrib Mineral Petrol 53:145–156

    Article  Google Scholar 

  • Aranovich LY, Newton RC (1996) H2O activity in concentrated NaCl solutions at high pressures and temperatures measured by the brucite-periclase equilibrium. Contrib Mineral Petrol 125:200–212

    Article  Google Scholar 

  • Aranovich LY, Newton RC (1997) H2O activity in concentrated NaCl solutions at high pressures and temperatures measured by the brucite-periclase equilibrium. Contrib Mineral Petrol 127:261–271

    Article  Google Scholar 

  • Aranovich LY, Zakirov IV, Sretenskaya NG, Gerya TV (2010) Ternary system H2O–CO2–NaCl at high T-P parameters: an empirical mixing model. Geochem Int 48:446–455

    Article  Google Scholar 

  • Ayers J (1998) Trace element modeling of aqueous fluid–peridotite interaction in the mantle wedge of subduction zones. Contrib Mineral Petrol 132:390–404

    Article  Google Scholar 

  • Bakker RJ, Jansen JBH (1991) Experimental post-entrapment water loss from synthetic CO2-H2O inclusions in natural quartz. Geochim Cosmochim Acta 55:2215–2230

    Article  Google Scholar 

  • Bali E, Audetat A, Keppler H (2011) The mobility of U and Th in subduction zone fluids: an indicator of oxygen fugacity and fluid salinity. Contrib Mineral Petrol 161:597–613

    Article  Google Scholar 

  • Barnes JD, Sharp ZD (2006) A chlorine isotope study of DSDP/ODP serpentinized ultra-mafic rocks: insights into the serpentinization process. Chem Geol 228:246–265

    Article  Google Scholar 

  • Barnes JD, Manning C, Scambelluri M, Selverstone J (2018) The behavior of halogens during subduction-zone processes. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 545–590

    Google Scholar 

  • Bell DR, Rossman GR (1992) Water in Earth’s mantle: the role of nominally anhydrous minerals. Science 255:1391–1397

    Article  Google Scholar 

  • Bell DR, Grégoire M, Grove TL, Chatterjee N, Carlson RW, Buseck PR (2005) Silica and volatile-element metasomatism of Archean mantle: a xenolith-scale example from the Kaapvaal Craton. Contrib Mineral Petrol 150:251–267

    Article  Google Scholar 

  • Bernini D, Wiedenbeck M, Dolejš D, Keppler H (2013) Partitioning of halogens between mantle minerals and aqueous fluids: implications for the fluid flow regime in subduction zones. Contrib Mineral Petrol 165:117–128

    Article  Google Scholar 

  • Beyer C, Klemme S, Wiedenbeck M, Stracke A, Vollmer C (2012) Fluorine in nominally fluorine-free mantle minerals: experimental partitioning of F between olivine, orthopyroxene and silicate melts with implications for magmatic processes. Earth Planet Sci Lett 337–338:1–9

    Article  Google Scholar 

  • Bodinier JL, Vasseur G, Vernieres J, Dupuy C, Fabries J (1990) Mechanism of mantle metasomatism: geochemical evidence from the Lherz orogenic peridotite. J Petrol 31:597–628

    Article  Google Scholar 

  • Bonadiman C, Coltorti M, D’Ambrosi F, Salvini L, Stiefenhofer J, Sweeney RJ, Zanetti A (1999) Enrichment processes in garnet-bearing mantle xenoliths from Kimberley pipes (South Africa). Ophioliti 24:70–71

    Google Scholar 

  • Bonadiman C, Nazzareni S, Coltorti M, Comodi P, Giuli G, Faccini B (2014) Crystal chemistry of amphiboles: implications for oxygen fugacity and water activity in lithospheric mantle beneath Victoria Land, Antarctica. Contrib Mineral Petrol 167:984–1001

    Article  Google Scholar 

  • Boyd SR, Mattey DP, Pillinger CT, Milledge HJ, Mendelssohn M, Seal M (1987) Multiple growth events during diamond genesis: an integrated study of carbon and nitrogen isotopes and nitrogen aggregation state in coated stones. Earth Planet Sci Lett 86:341–353

    Article  Google Scholar 

  • Boyd SR, Pineau F, Javoy M (1994) Modelling the growth of natural diamonds. Chem Geol 116:29–42

    Article  Google Scholar 

  • Bromiley DW, Kohn SC (2007) Comparisons between fluoride and hydroxide incorporation in nominally anhydrous and fluorine-free mantle minerals. Geochim Cosmochim Acta 71:A124

    Google Scholar 

  • Bureau H, Keppler H (1999) Complete miscibility between silicate melts and hydrous fluids in the upper mantle: experimental evidence and geochemical implications. Earth Planet Sci Lett 165:187–196

    Article  Google Scholar 

  • Burgess R, Turner G (1995) Halogen geochemistry of mantle fluids in diamonds. In: Farley KA (ed) Volatiles in the earth and solar system. AIP conference proceedings, vol 341. pp 91–98

    Google Scholar 

  • Burgess R, Layzelle E, Turner G, Harris JW (2002) Constraints on the age and halogen composition of mantle fluids in Siberian coated diamonds. Earth Planet Sci Lett 197:193–203

    Article  Google Scholar 

  • Burgess R, Cartigny P, Harrison D, Hobson E, Harris JW (2009) Volatile composition of microinclusions in diamonds from the Panda kimberlite, Canada: implications for chemical and isotopic heterogeneity in the mantle. Geochim Cosmochim Acta 73:1779–1794

    Article  Google Scholar 

  • Carswell DA (1975) Primary and secondary phlogopites and clinopyroxenes in garnet lherzolite xenoliths. Phys Chem Earth 9:417–429

    Article  Google Scholar 

  • Cartigny P, Farquhar J, Harris JW, Thomassot E, Wing B, Masterson A, McKeegan K, Stachel TS (2009) A mantle origin for Paleoarchean peridotitic diamonds from the Panda kimberlite, Slave craton: evidence from 13C-, 15 N- and 33, 34S- stable isotope systematics. Lithos 67:234–246

    Google Scholar 

  • Casagli A, Frezzotti ML, Peccerillo A, Tiepolo M,  De Astis G (2017) (Garnet)-spinel peridotite xenoliths from Mega (Ethiopia): evidence for rejuvenation and dynamic thinning of the lithosphere beneath the southern Main Ethiopian Rift. Chem Geol 455:231–248

    Google Scholar 

  • Chalapati Rao NV, Gibson SA, Pyle DM, Dickin AP (2004) Petrogenesis of Proterozoic lamproites and kimberlites from the Cuddapah Basin and Dharwar Craton, Southern India. J Petrol 45:907–948

    Article  Google Scholar 

  • Coltorti M, Beccaluva L, Bonadiman C, Faccini B, Ntaflos T, Siena F (2004) Amphibole genesis via metasomatic reaction with clinopyroxene in mantle xenoliths from Victoria Land, Antarctica. Lithos 75:115–139

    Article  Google Scholar 

  • Coltorti M, Bonadiman C, Faccini B, Grégoire M, O’Reilly SY, Powell W (2007) Amphiboles from suprasubduction and intraplate lithospheric mantle. Lithos 99:68–84

    Article  Google Scholar 

  • Conceição RV, Green DH (2004) Derivation of potassic (shoshonitic) magmas by decompression melting of phlogopite + pargasite lherzolite. Lithos 72:209–229

    Article  Google Scholar 

  • Condamine P, Médard E (2014) Experimental melting of phlogopite-bearing mantle at 1 GPa: implications for potassic magmatism. Earth Planet Sci Lett 397:80–92

    Article  Google Scholar 

  • Dalou C, Koga KT, Shimizu N, Boulon J, Devidal JL (2012) Experimental determination of F and Cl partitioning between lherzolite and basaltic melt. Contrib Mineral Petrol 163:591–609

    Article  Google Scholar 

  • Dalton JA, Presnall DC (1998) The continuum of primary carbonatitic–kimberlitic melt compositions in equilibrium with lherzolite: data from the system CaO–MgO–Al2O3–SiO2–CO2 at 6 GPa. J Petrol 39:1953–1964

    Google Scholar 

  • Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett 298:1–13

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM, Smith ND (2007) Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts. J Petrol 48:2093–2124

    Article  Google Scholar 

  • Dawson JB, Smith JV (1977) The MARID (mica–amphibole–rutile–ilmenite–diopside) suite of xenoliths in kimberlite. Geochim Cosmochim Acta 41:309–323

    Article  Google Scholar 

  • Dawson JB, Smith JV (1982) Upper-mantle amphiboles: a review. Mineral Mag 45:35–46

    Article  Google Scholar 

  • De Vivo B, Frezzotti ML, Lima A (1988) Spinel lherzolite nodules from Oahu Island (Hawaii): a fluid inclusion study. Bull Minéral 111:307–319

    Google Scholar 

  • Dixon JE, Leist L, Langmuir C, Schilling JG (2002) Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature 420:385–389

    Article  Google Scholar 

  • Dolejs D, Zajacz Z (2018) Halogens in silicic magmas and their hydrothermal systems. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 431–543

    Google Scholar 

  • Dooley DF, Patiño Douce AE (1996) Fluid-absent melting of F-rich phlogopite + rutile + quartz. Am Mineral 81:202–212

    Article  Google Scholar 

  • Downes H, Bodinier JL, Thirlwall MF, Lorand JP, Fabriès J (1991) REE and Sr-Nd isotopic geochemistry of Eastern Pyrenean peridotite massifs: sub-continental lithospheric mantle modified by continental magmatism. J Petrol, Spec Vol Orogenic Lherzolites and Mantle Processes: 97–115

    Google Scholar 

  • El Atrassi F, Chazot G, Brunet F, Chopin C, Bouybaouene M (2014) Amphibole genesis in pyroxenites from the Beni Bousera peridotite massif (Rif, Morocco): evidence for two different metasomatic episodes. Lithos 208–209:67–80

    Article  Google Scholar 

  • Enggist A, Chu L, Luth RW (2012) Phase relations of phlogopite with magnesite from 4 to 8 GPa. Contrib Mineral Petrol 163:467–481

    Article  Google Scholar 

  • Erlank AJ, Waters FG, Hawkesworth CJ, Haggerty SE, Allsopp HL, Rickard RS, Menzies M (1987) Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, South Africa. In: Menzies M, Hawkesworth CJ (eds) Mantle metasomatism. Academic Press, London, pp 221–309

    Google Scholar 

  • Exley RA, Sills JD, Smith JV (1982) Geochemistry of micas from the Finero spinel-lherzolite, Italian Alps. Contrib Mineral Petrol 81:59–63

    Article  Google Scholar 

  • Fabbrizio A, Stalder R, Hametner K, Günther D (2013) Experimental chlorine partitioning between forsterite, enstatite and aqueous fluid at upper mantle conditions. Geochim Cosmochim Acta 121:684–700

    Article  Google Scholar 

  • Faure G (1991) Principles and applications of geochemistry, 2nd edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Ferrando S, Frezzotti ML, Neumann ER, De Astis G, Peccerillo A, Dereje A, Gezahegn Y, Teklewold A (2008) Composition and thermal structure of the lithosphere beneath the Ethiopian plateau: evidence from mantle xenoliths in basanites, Injibara, Lake Tana Province. Mineral Petrol 93:47–78

    Article  Google Scholar 

  • Ferreira VP, Sial AN, Cruz MJM (1995) Mineral chemistry of mica-pyroxenite xenoliths in NeoProterozoic ultrapotassic syenitic magmas, NE Brazil. Anais Acad Bras Ciên 67:307–319

    Google Scholar 

  • Foley SF, Taylor WR, Green DH (1986) The effect of fluorine on phase relationships in the system KAlSiO4-Mg2SiO4-SiO2 at 28 kbar and the solution mechanism of fluorine in silicate melts. Contrib Mineral Petrol 93:46–55

    Article  Google Scholar 

  • Foley SF, Musselwhite DS, Van der Laan SR (1999) Melt compositions from ultramafic vein assemblages in the lithospheric mantle: a comparison of cratonic and non-cratonic settings. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) The J. B. Dawson volume: Proceedings of the VIIth international kimberlite conference, Cape Town, pp 238–246

    Google Scholar 

  • Frey FA, Prinz M (1978) Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth Planet Sci Lett 38:129–176

    Article  Google Scholar 

  • Frezzotti ML, Peccerillo A (2007) Diamond-bearing C-O-H-S fluids in the mantle beneath Hawaii. Earth Planet Sci Lett 262:273–283

    Article  Google Scholar 

  • Frezzotti ML, Touret JLR (2014) CO2, carbonate-rich melts, and brines in the mantle. Geosci Front 5:697–710

    Article  Google Scholar 

  • Frezzotti ML, Burke EAJ, De Vivo B, Stefanini B, Villa IM (1992) Mantle fluids in pyroxenite nodules from Salt Lake Crater (Oahu, Hawaii). Eur J Mineral 4:1137–1153

    Article  Google Scholar 

  • Frezzotti ML, Andersen T, Neumann ER, Simonsen SL (2002a) Carbonatite melt-CO2 inclusions in mantle xenoliths from Tenerife, Canary Islands: a story of trapping, immiscibility and fluid-rock interaction in the upper mantle. Lithos 64:77–96

    Article  Google Scholar 

  • Frezzotti ML, Neumann ER, Touret JLR (2002b) Ephemeral carbonate melts in the upper mantle: carbonate silicate immiscibility in microveins and inclusions within spinel peridotite xenoliths, La Gomera, Canary Islands. Eur J Mineral 14:891–904

    Article  Google Scholar 

  • Frezzotti ML, Ferrando S, Peccerillo A, Petrelli M, Tecce F (2010) Chlorine-rich metasomatic H2O-CO2 fluids in amphibole-bearing peridotites from Injibara (Lake Tana region, Ethiopian plateau): nature and evolution of volatiles in the mantle of a region of continental flood basalts. Geochim Cosmochim Acta 74:3023–3039

    Article  Google Scholar 

  • Frezzotti ML, Ferrando S, Tecce F, Castelli D (2012) Water content and nature of solutes in shallow-mantle fluids from fluid inclusions. Earth Planet Sci Lett 351–352:70–83

    Article  Google Scholar 

  • Fumagalli P, Zanchetta S, Poli S (2009) Alkali in phlogopite and amphibole and their effects on phase relations in metasomatized peridotites: a high-pressure study. Contrib Mineral Petrol 158:723–737

    Article  Google Scholar 

  • Garcia MO, Muenow DW, Liu NWK (1980) Volatiles in Ti-rich amphibole megacrysts, southwest USA. Am Mineral 65:306–312

    Google Scholar 

  • Gibert F, Guillaume D, Laporte D (1998) Importance of fluid immiscibility in the H2O-CO2-NaCl system and selective CO2 entrapment in granulites: experimental phase diagram at 5–7 kbar, 900 °C and wetting textures. Eur J Mineral 10:1109–1123

    Article  Google Scholar 

  • Greenwood NN, Earnshaw A (1984) Chemistry of the elements. Pergamon, Oxford, p 567

    Google Scholar 

  • Grégoire M, Bell DR, Le Roex AP (2002) Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contrib Mineral Petrol 142:603–625

    Article  Google Scholar 

  • Griffin WL, Åmli R, Heier KS (1972) Whitlockite and apatite from lunar rock 14310 and from Ödegården, Norway. Earth Planet Sci Lett 15:53–57

    Article  Google Scholar 

  • Griffin WL, Wass SY, Hollis JD (1984) Ultramafic xenoliths from Bullenmerri and Gnotuk maars, Victoria, Australia: petrology of a subcontinental crust-mantle transition. J Petrol 25:53–87

    Article  Google Scholar 

  • Gudfinnsson GH, Presnall DC (2005) Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa. J Petrol 46:1645–1659

    Article  Google Scholar 

  • Guggino SN, Hervig RL, Bell DR (2007) Fluorine in olivines from plutonic, extrusive, and hypabyssal suites. EOS transations, vol 88. American Geophysical Union, V41B-0609

    Google Scholar 

  • Guthrie GD, Veblen DR, Navon O, Rossman GR (1991) Submicrometer fluid inclusions in turbid-diamond coats. Earth Planet Sci Lett 105:1–12

    Article  Google Scholar 

  • Hammouda T, Laporte D (2000) Ultrafast mantle impregnation by carbonatite melts. Geology 28:283–285

    Article  Google Scholar 

  • Harte B (1987) Metasomatic events recorded in mantle xenoliths: an overview. In: Nixon PH (ed) Mantle xenoliths. Wiley, pp 625–640

    Google Scholar 

  • Heinrich W (2007) Fluid immiscibility in metamorphic rocks. In: Liebscher A, Heinrich CA (eds) Fluid-fluid interactions, vol 65. Reviews in Mineralogy and Geochemistry. Mineralogical Society of America, Washington, DC, pp 389–430

    Google Scholar 

  • Heinrich W, Churakov SS, Gottschalk M (2004) Mineral-fluid equilibria in the system CaO-MgO-SiO2-H2O-CO2-NaCl and the record of reactive fluid flow in contact metamorphic aureoles. Contrib Mineral Petrol 148:131–149

    Article  Google Scholar 

  • Hervig RL, Bell DR (2005) Fluorine and hydrogen in mantle megacrysts. EOS Transations, vol 86. American Geophysical Union, V41A-1426

    Google Scholar 

  • Hidas K, Guzmics T, Szabó C, Kovács I, Bodnar RJ, Zajacz Z, Nédli Z, Vaccari L, Perucchi A (2010) Coexisting silicate melt inclusions and H2O-bearing, CO2-rich fluid inclusions in mantle peridotite xenoliths from the Carpathian-Pannonian region (central Hungary). Chem Geol 274:1–18

    Article  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust and oceanic crust. Earth Planet Sci Lett 90:297–314

    Article  Google Scholar 

  • Hofmann AW (2003) Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In: Carlson RW (ed) The mantle and core, vol 2. Treatise on geochemistry. Elsevier, Oxford, pp 61–101

    Google Scholar 

  • Holland G, Ballentine CJ (2006) Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441:186–191

    Article  Google Scholar 

  • Hollister LS (1990) Enrichment of CO2 in fluid inclusions in quartz by removal of H2O during crystal-plastic deformation. J Struct Geol 12:895–901

    Article  Google Scholar 

  • Hughes JM, Jolliff BL, Rakovan J (2008) The crystal chemistry of whitlockite and merrillite and the dehydrogenation of whitlockite to merrillite. Am Mineral 93:1300–1305

    Article  Google Scholar 

  • Huizenga JM (2001) Thermodynamic modelling of C-O-H fluids. Lithos 55:101–114

    Article  Google Scholar 

  • Huizenga JM (2005) C-O-H, an Excel spread sheet for composition calculations in the C-O-H fluid system. Comp Geosci 31:797–800

    Article  Google Scholar 

  • Ionov DA, Hofmann AW (1995) Nb-Ta-rich mantle amphiboles and micas: implications for subduction-related metasomatic trace element fractionations. Earth Planet Sci Lett 131:341–356

    Article  Google Scholar 

  • Ionov DA, Griffin WL, O’Reilly SY (1997) Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chem Geol 141:153–184

    Article  Google Scholar 

  • Ionov DA, Bodinier J-L, Mukasa SB, Zanetti A (2000) Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modelling. J Petrol 43:2219–2259

    Article  Google Scholar 

  • Ionov DA, Hofmann AW, Merlet C, Gurenko AA, Hellebrand E, Montagnac G, Gillet P, Prikhodko VS (2006) Discovery of whitlockite in mantle xenoliths: inferences for water-and halogen-poor fluids and trace element residence in the terrestrial upper mantle. Earth Planet Sci Lett 244:201–217

    Article  Google Scholar 

  • Ito E, Harris DM, Anderson AT (1983) Alteration of oceanic crust and geologic cycling of chlorine and water. Geochim Cosmochim Acta 47:1613–1624

    Article  Google Scholar 

  • Izraeli ES, Harris JW, Navon O (2001) Brine inclusions in diamonds: a new upper mantle fluid. Earth Planet Sci Lett 187:323–332

    Article  Google Scholar 

  • Izraeli ES, Harris JW, Navon O (2004) Fluid and mineral inclusions in cloudy diamonds from Koffiefontein, South Africa. Geochim Cosmochim Acta 68:2561–2575

    Article  Google Scholar 

  • Jenkins DM (1983) Stability and composition relations of calcic amphiboles in ultramafic rocks. Contrib Mineral Petrol 83:375–384

    Google Scholar 

  • John T, Scambelluri M, Frische M, Barnes JD, Bach W (2011) Dehydration of subducting serpentinite: implications for halogen mobility in subduction zones and the deep halogen cycle. Earth Planet Sci Lett 308:65–76

    Article  Google Scholar 

  • Johnson EL (1991) Experimentally determined limits for H2O-CO2-NaCl immiscibility in granulites. Geology 19:925–928

    Article  Google Scholar 

  • Johnson KE, Davis AM, Bryndzia LT (1996) Contrasting styles of hydrous metasomatism in the upper mantle: an ion microprobe investigation. Geochim Cosmochim Acta 60:1367–1385

    Article  Google Scholar 

  • Johnson LH, Burgess R, Turner G, Harris JH, Milledge HJ (2000) Noble gas and halogen geochemistry of mantle fluids in diamond: comparison of African and Canadian stones. Geochim Cosmochim Acta 64:717–732

    Article  Google Scholar 

  • Kamenetsky MB, Sobolev AV, Kamenetsky VS, Maas R, Danyushevsky LV, Thomas R, Pokhilenko NP, Sobolev NV (2004) Kimberlite melts rich in alkali chlorides and carbonates: a potent metasomatic agent in the mantle. Geology 32:845–848

    Article  Google Scholar 

  • Kamenetsky VS, Kamenetsky MB, Sharygin VV, Faure K, Golovin AV (2007) Chloride and carbonate immiscible liquids at the closure of the kimberlite magma evolution (Udachnaya East Kimberlite, Siberia). Chem Geol 237:384–400

    Article  Google Scholar 

  • Kamenetsky VS, Kamenetsky MB, Weiss Y, Navon O, Nielsen TFD, Mernagh TP (2009a) How unique is the Udachnaya-East kimberlite? Comparison with kimberlites from the Slave Craton (Canada) and SW Greenland. Lithos 112:334–346

    Article  Google Scholar 

  • Kamenetsky VS, Maas R, Kamenetsky MB, Paton C, Phillips D, Golovin AV, Gornova MA (2009b) Chlorine from the mantle: magmatic halides in the Udachnaya-East kimberlite, Siberia. Earth Planet Sci Lett 285:96–104

    Article  Google Scholar 

  • Kamenetsky VS, Kamenetsky MB, Golovin AV, Sharygin VV, Maas R (2012) Ultrafresh salty kimberlite of the Udachnaya-East pipe (Yakutia, Russia): a petrological oddity or fortuitous discovery? Lithos 152:173–186

    Article  Google Scholar 

  • Kawamoto T, Yoshikawa M, Kumagai Y, Mirabueno MHT, Okuno M, Kobayashi T (2013) Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab. Proc Natl Acad Sci 110:9663–9668

    Article  Google Scholar 

  • Kendrick MA (2012) High precision Cl, Br and I determinations in mineral standards using the noble gas method. Chem Geol 292–293:116–126

    Article  Google Scholar 

  • Kendrick MA, Kamenetsky VS, Phillips D, Honda M (2012) Halogen (Cl, Br, I) systematics of mid-ocean ridge basalts: a Macquarie Island case study. Geochim Cosmochim Acta 81:82–93

    Article  Google Scholar 

  • Kendrick MA, Arculus RJ, Danyushevsky LV, Kamenetsky VS, Woodhead JD, Honda M (2014) Subduction-related halogen (Cl, Br and I) and H2O in magmatic glasses from Southwest Pacific Backarc Basins. Earth Planet Sci Lett 400:165–176

    Article  Google Scholar 

  • Keppler H (1996) Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature 380:237–240

    Article  Google Scholar 

  • Keppler H, Smyth JR (2006) Water in nominally anhydrous minerals. Reviews in mineralogy and geochemistry. Mineralogical Society of America, Washington, DC, p 62

    Google Scholar 

  • Kjarsgaard BA, Pearson DG, Tappe S, Nowell GM, Dowall DP (2009) Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada; comparisons to a global data base and applications to the parent magma problem. Lithos 112:236–248

    Article  Google Scholar 

  • Klein-BenDavid O, Izraeli I, Hauri E, Navon O (2004) Mantle fluid evolution—a tale of one diamond. Lithos 77:243–253

    Article  Google Scholar 

  • Klein-BenDavid O, Wirth R, Navon O (2006) TEM imaging and analysis of microinclusions in diamonds: a close look at diamond-growing fluids. Am Mineral 91:353–365

    Article  Google Scholar 

  • Klein-BenDavid O, Izraeli ES, Hauri E, Navon O (2007) Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids. Geochim Cosmochim Acta 71:723–744

    Article  Google Scholar 

  • Klein-BenDavid O, Logvinova AM, Schrauder M, Spetius ZV, Weiss Y, Hauri EH, Kaminsky FV, Sobolev NV, Navon O (2009) High-Mg carbonatitic microinclusions in some Yakutian diamonds—a new type of diamond-forming fluid. Lithos 112:648–659

    Article  Google Scholar 

  • Konzett J, Frost DJ (2009) The high P-T stability of hydroxyl-apatite in natural and simplified MORB—an experimental study to 15 GPa with implications for transport and storage of phosphorus and halogens in subduction zones. J Petrol 50:2043–2062

    Article  Google Scholar 

  • Konzett J, Ulmer P (1999) The stability of hydrous potassic phases in lherzolitic mantle—an experimental study to 9·5 GPa in simplified and natural bulk compositions. J Petrol 40:629–652

    Article  Google Scholar 

  • Konzett J, Rhede D, Frost DJ (2012) The high PT stability of apatite and Cl partitioning between apatite and hydrous potassic phases in peridotite: an experimental study to 19 GPa with implications for the transport of P, Cl and K in the upper mantle. Contrib Mineral Petrol 163:277–296

    Article  Google Scholar 

  • Kopylova M, Navon O, Dubrovinsky L, Khachatryan G (2010) Carbonatitic mineralogy of natural diamond-forming fluids. Earth Planet Sci Lett 291:126–137

    Article  Google Scholar 

  • Kopylova MG, Kostrovitsky SI, Egorov KN (2013) Salts in southern Yakutian kimberlites and the problem of primary alkali kimberlite melts. Earth Sci Rev 119:1–16

    Article  Google Scholar 

  • Koster Van Groos AF, Wyllie PJ (1968) Liquid immiscibility in the join NaAlSi3O8-Na2CO3-H2O and its bearing on the genesis of carbonatites. Am J Sci 266:932–967

    Google Scholar 

  • Le Roux PJ, Shirey SB, Hauri EH, Perfit MR, Bender JF (2006) The effects of variable sources, processes and contaminants on the composition of northern EPR MORB (8–108 N and 12–148 N): evidence from volatiles (H2O, CO2, S) and halogens (F, Cl). Earth Planet Sci Lett 251:209–231

    Article  Google Scholar 

  • Luth RW (1997) Experimental study of the system phlogopite-diopside from 3.5 to 17 GPa. Am Mineral 82:1198–1209

    Article  Google Scholar 

  • Luth RW (2014) Volatiles in Earth’s mantle. In: Carlson RW (ed) The mantle and core, vol 3. Treatise on geochemistry. Elsevier, Oxford, pp 355–391

    Google Scholar 

  • Lyubetskaya T, Korenaga J (2007) Chemical composition of Earth’s primitive mantle and its variance: 1. Method and results. J Geophys Res-Solid Earth 112:B03211

    Google Scholar 

  • Maas R, Kamenetsky MB, Sobolev AV, Kamenetsky VS, Sobolev NV (2005) Sr, Nd, and Pb isotope evidence for a mantle origin of alkali chlorides and carbonates in the Udachnaya Kimberlite, Siberia. Geology 33:549–552

    Article  Google Scholar 

  • Mackwell SJ, Kohlstedr DL (1990) Diffusion of hydrogen in olivine: implications for water in the mantle. J Geophys Res 95:5079–5088

    Article  Google Scholar 

  • Magenheim AJ, Spivack AJ, Michael PJ, Gieskes JM (1995) Chlorine stable-isotope composition of the oceanic-crust—implications for Earths distribution of chlorine. Earth Planet Sci Lett 131:427–432

    Article  Google Scholar 

  • Mahn CL, Gieskes JM (2001) Halide systematics in comparison with nutrient distributions in sites 1033B and 1034B, Saanich Inlet: ODP Leg 169S. Mar Geol 174:323–339

    Article  Google Scholar 

  • Manning CE (2004) The chemistry of subduction-zone fluids. Earth Planet Sci Lett 223:1–16

    Article  Google Scholar 

  • Manning CE, Aranovich LY (2014) Brines at high pressure and temperature: thermodynamic, petrologic and geochemical effects. Precambr Res 253:6–16

    Article  Google Scholar 

  • Martin JB, Gieskes JM, Torres M, Kastner M (1993) Bromine and iodine in Peru margin sediments and pore fluids—implications for fluid origins. Geochim Cosmochim Acta 57:4377–4389

    Article  Google Scholar 

  • Marty B, Zimmermann L (1999) Volatiles (He, C, N, Ar) in mid-ocean ridge basalts: assessment of shallow-level fractionation and characterization of source composition. Geochim Cosmochim Acta 63:3619–3633

    Article  Google Scholar 

  • Matson DW, Muenow DW, Garcia MO (1986) Volatile contents of phlogopite micas from South African kimberlite. Contrib Mineral Petrol 93:399–408

    Article  Google Scholar 

  • Mazzucchelli M, Zanetti A, Rivalenti G, Vannucci R, Teixeira Correia C, Gaeta Tassinari CC (2010) Age and geochemistry of mantle peridotites and diorite dykes from the Baldissero body: insights into the Paleozoic-Mesozoic evolution of the Southern Alps. Lithos 119:485–500

    Article  Google Scholar 

  • McInnes BIA, Gregoire M, Binns RA, Herzig PM, Hannington MD (2001) Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea: petrology and geochemistry of fluid-metasomatised mantle wedge xenoliths. Earth Planet Sci Lett 188:169–183

    Article  Google Scholar 

  • Mengel K, Green DH (1989) Stability of amphibole and phlogopite in metasomatized peridotite under water-saturated and water-undersaturated conditions. In: Kimberlites and related rocks. Geol Soc Aust Spec Pub 14:571–581

    Google Scholar 

  • Moine BN, Cottin JY, Sheppard SMF, Grégoire M, O’Reilly SY, Giret A (2000) Incompatible trace element and isotopic (D/H) characteristics of amphibole- and phlogopite-bearing ultramafic to mafic xenoliths from Kerguelen Islands (TAAF, South Indian Ocean). Eur J Mineral 12:761–777

    Article  Google Scholar 

  • Moine BN, Grégoire DC, O’Reilly SY, Sheppard SMF, Cottin JY (2001) High field strength element fractionation in the upper mantle: evidence from amphibole-rich composite mantle xenoliths from the Kerguelen Islands (Indian Ocean). J Petrol 42:2145–2167

    Article  Google Scholar 

  • Morishita T, Arai S, Tamura A (2003) Petrology of an apatite-rich layer in the Finero phlogopite–peridotite, Italian Western Alps; implications for evolution of a metasomatising agent. Lithos 69:37–49

    Article  Google Scholar 

  • Mosenfelder JL, Rossman GR (2013a) Analysis of hydrogen and fluorine in pyroxenes: I Orthopyroxene. Am Mineral 98:1026–1041

    Article  Google Scholar 

  • Mosenfelder JL, Rossman GR (2013b) Analysis of hydrogen and fluorine in pyroxenes: II Clinopyroxene. Am Mineral 98:1054–1942

    Google Scholar 

  • Mosenfelder JL, Le Voyer M, Rossman GR, Guan Y, Bell DR, Asimov PD, Eiler JM (2011) Analysis of hydrogen in olivine by SIMS: evaluation of standards and protocol. Am Mineral 96:1725–1741

    Article  Google Scholar 

  • Motoyoshi Y, Hensen BJ (2001) F-rich phlogopite stability in ultra-high-temperature metapelites from the Napier Complex, East Antarctica. Am Mineral 86:1404–1413

    Article  Google Scholar 

  • Murck BW, Burruss RC, Hollister LS (1978) Phase equilibria in fluid inclusions in ultramafic xenoliths. Am Mineral 63:40–46

    Google Scholar 

  • Navon O, Hutcheon ID, Rossman GR, Wasserburg GJ (1988) Mantle-derived fluids in diamond micro-inclusions. Nature 335:784–789

    Article  Google Scholar 

  • Navon O, Izraeli ES, Klein-BenDavid O (2003) Fluid inclusions in diamonds—the carbonatitic connection. In: Proceedings of the 8th international kimberlite conference, vol 107, Victoria, Canada, pp 1–5

    Google Scholar 

  • Newton RC, Manning CE (2010) Role of saline fluids in deep-crustal and upper-mantle metasomatism: insight from experimental studies. Geofluids 10:57–72

    Google Scholar 

  • Newton RC, Aranovich LY, Hansen EC, Vandenheuvel BA (1998) Hypersaline fluids in Precambrian deep-crustal metamorphism. Precambr Res 91:41–63

    Article  Google Scholar 

  • Niida K, Green DH (1999) Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contrib Mineral Petrol 135:18–40

    Article  Google Scholar 

  • O’Reilly SY, Griffin WL (2000) Apatite in the mantle: implications for metasomatic processes and high heat production in Phanerozoic mantle. Lithos 53:217–232

    Article  Google Scholar 

  • O’Reilly SY, Griffin WL (2013) Mantle Metasomatism. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock. Lecture notes in earth system sciences. Springer, Berlin, pp 471–533

    Chapter  Google Scholar 

  • O’Reilly SY, Griffin WL, Segalstad TV (1990) The nature and role of fluids in the upper mantle: evidence in xenoliths from Victoria, Australia. In: Herbert HK, Ho EH (eds) Stable isotopes and fluid processes in mineralization, vol 23. Geology Department and University Extension, The University of Western Australia, pp 315–323

    Google Scholar 

  • O’Reilly SY, Griffin WL, Ryan CG (1991) Residence of trace elements in metasomatized spinel lherzolite xenoliths: a proton-microprobe study. Contrib Mineral Petrol 109:98–113

    Article  Google Scholar 

  • Palme H, Jones A (2003) Solar system abundances of the elements. Treatise Geochem 1:41–61. In: Davis AM (ed) Meteorites, comets, and planets. treatise on geochemistry, vol 1. Elsevier, Oxford, pp 41–61

    Google Scholar 

  • Palme H, O’Neill HSTC (2003) Cosmochemical estimates of mantle composition. In: Carlson RW (ed) The mantle and core, vol 2. Treatise on geochemistry. Elsevier, Oxford, pp 1–38

    Google Scholar 

  • Pasteris JD (1987) Fluid inclusions in mantle xenoliths. In: Nixon PH (ed) Mantle xenoliths. Wiley, New York, pp 691–708

    Google Scholar 

  • Patiño Douce AE, Roden M (2006) Apatite as a probe of halogen and water fugacities in the terrestrial planets. Geochim Cosmochim Acta 70:3173–3196

    Article  Google Scholar 

  • Patiño Douce AE, Roden MF, Chaumba J, Fleisher C, Yogodzinski G (2011) Compositional variability of terrestrial mantle apatites, thermodynamic modeling of apatite volatile contents, and the halogen and water budgets of planetary mantles. Chem Geol 288:14–31

    Google Scholar 

  • Pearson DG, Brenker FE, Nestola F, McNeill J, Nasdala L, Hutchison MT, Matveev S, Mather K, Silversmit G, Schmitz S, Vakemans B, Vincze L (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507:221–224

    Article  Google Scholar 

  • Perchuk LL, Safonov OG, Yapaskurt VO, Barton JM (2002) Crystal-melt equilibria involving potassium-bearing clinopyroxene as indicator of mantle-derived ultrahigh potassic liquids: an analytical review. Lithos 60:89–111

    Article  Google Scholar 

  • Peslier AH (2010) A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon. J Volcanol Geoth Res 197:239–258

    Article  Google Scholar 

  • Philippot P (1993) Fluid-melt-rock interaction in mafic eclogites and coesite-bearing metasediments: constraints on volatile recycling during subduction. Chem Geol 108:93–112

    Article  Google Scholar 

  • Philippot P, Agrinier P, Scambelluri M (1998) Chlorine cycling in the subducted oceanic lithosphere. Earth Planet Sci Lett 161:33–44

    Article  Google Scholar 

  • Powell W, Zhang M, O’Reilly SY, Tiepolo M (2004) Mantle amphibole trace-element and isotopic signatures trace multiple metasomatic episodes in lithospheric mantle, western Victoria, Australia. Lithos 75:141–171

    Article  Google Scholar 

  • Pyle DM, Mather TA (2009) Halogens in igneous systems. Chem Geol 263:110–121

    Article  Google Scholar 

  • Railsback B (2003) An earth scientist’s periodic table of the elements and their ions. Geology 31:737–740

    Article  Google Scholar 

  • Rege S, Griffin WL, Pearson NJ, Araujo D, Zedgenizov D, O’Reilly SY (2010) Trace element patterns of fibrous and monocrystalline diamonds: insights into mantle fluids. Lithos 118:313–337

    Article  Google Scholar 

  • Roedder E (1965) Liquid CO2 inclusions in olivine-bearing nodules and phenocrysts from basalts. Am Mineral 50:1746–1782

    Google Scholar 

  • Roedder E (1984) Fluid inclusions. Reviews in mineralogy and geochemistry, vol 12. Mineralogical Society of America, Washington, DC

    Google Scholar 

  • Saal AE, Hauri EH, Langmuir CH, Perfit MR (2002) Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419:451–455

    Article  Google Scholar 

  • Safonov OG, Perchuk LL, Litvin YA (2007) Melting relations in the chloride-carbonate-silicate systems at high pressure and the model for formation of alkalic diamond-forming liquids in the upper mantle. Earth Planet Sci Lett 253:112–128

    Article  Google Scholar 

  • Safonov OG, Chertkova NV, Perchuk LL, Litvin YA (2009) Experimental model for alkalic chloride-rich liquids in the upper mantle. Lithos 112:260–273

    Article  Google Scholar 

  • Safonov OG, Kamenetsky VS, Perchuk LL (2011) Links between carbonatite and kimberlite melts in chloride-carbonate-silicate systems; experiments and application to natural assemblages. J Petrol 52:1307–1331

    Article  Google Scholar 

  • Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosys 5:Q05004

    Article  Google Scholar 

  • Scambelluri M, Philippot P (2001) Deep fluids in subduction zones. Lithos 55:213–227

    Article  Google Scholar 

  • Scambelluri M, Piccardo GB, Philippot P, Robbiano A, Negretti L (1997) High salinity fluid inclusions formed from recycled seawater in deeply subducted alpine serpentinite. Earth Planet Sci Lett 148:485–499

    Article  Google Scholar 

  • Scambelluri M, Bottazzi P, Trommsdorff V, Vannucci R, Hermann J, Gomez-Pugnaire MT, Lopez-Sanchez Vizcaıno V (2002) Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantle. Earth Planet Sci Lett 192:457–470

    Article  Google Scholar 

  • Schilling JG, Bergeron MB, Evans R (1980) Halogens in the mantle beneath the North Atlantic. Philos Trans R Soc Lond A297:147–178

    Article  Google Scholar 

  • Schrauder M, Navon O (1994) Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochim Cosmochim Acta 58:761–771

    Article  Google Scholar 

  • Schrauder M, Koeberl C, Navon O (1996) Trace element analyses of fluid-bearing diamonds from Jwaneng, Botswana. Geochim Cosmochim Acta 60:4711–4724

    Article  Google Scholar 

  • Scribano V, Viccaro M, Cristofolini R, Ottolini L (2009) Metasomatic events recorded in ultramafic xenoliths from the Hyblean area (Southeastern Sicily, Italy). Mineral Petrol 95:235–250

    Article  Google Scholar 

  • Seaman C, Sherman SB, Garcia MO, Baker MB, Balta B, Stolper E (2004) Volatiles in glasses from the HSDP2 drill core. Geochem Geophys Geosyst 5:Q09G16

    Google Scholar 

  • Selverstone J, Sharp ZD (2011) Chlorine isotope evidence for multicomponent mantle metasomatism in the Ivrea Zone. Earth Planet Sci Lett 310:429–440

    Article  Google Scholar 

  • Sharygin IS, Litasov KD, Shatskiy A, Golovin AV, Ohtani E, Pokhilenko NP (2014) Melting phase relations of the Udachnaya-East Group-I kimberlite at 3.0–6.5 GPa: experimental evidence for alkali-carbonatite composition of primary kimberlite melts and implications for mantle plumes. Gondwana Res 28:1391–1414

    Article  Google Scholar 

  • Shaw CSJ, Kleugel A (2002) The pressure and temperature conditions and timing of glass formation in mantle-derived xenoliths from Baarley, West Eifel, Germany: the case for amphibole breakdown, lava infiltration and mineral–melt reaction. Mineral Petrol 74:163–187

    Article  Google Scholar 

  • Shiryaev AA, Izraeli ES, Hauri EH, Zakharchenko OD, Navon O (2005) Chemical, optical and isotopic investigation of fibrous diamonds from Brazil. Russ Geol Geophys 46:1185–1201

    Google Scholar 

  • Skippen G, Trommsdorff V (1986) The influence of NaCl and KCl on phase relations in metamorphosed carbonate rocks. Am J Sci 286:81–104

    Article  Google Scholar 

  • Smith EM, Kopylova MG, Nowell GM, Pearson D, Ryder J (2012) Archean mantle fluids preserved in diamonds from Wawa, Superior Craton. Geology 40:1071–1074

    Article  Google Scholar 

  • Smith EM, Kopylova MG, Frezzotti ML, Afanasiev VP (2014) N-rich fluid inclusions in octahedrally-grown diamond. Earth Planet Sci Lett 393:39–48

    Article  Google Scholar 

  • Smith EM, Kopylova MG, Frezzotti ML, Afanasiev VP (2015) Fluid inclusions in Ebelyakh diamonds: evidence of CO2 liberation in eclogite and the effect of H2O on diamond habit. Lithos 216:106–117

    Article  Google Scholar 

  • Smith JV, Delaney JS, Hervig RL, Dawson JB (1981) Storage of F and Cl in the upper mantle: geochemical implications. Lithos 14:133–147

    Article  Google Scholar 

  • Sobolev NV, Logvinova AM, Efimova ES (2009a) Syngenetic phlogopite inclusions in kimberlite-hosted diamonds: implications for role of volatiles in diamond formation. Russian Geol Geophys 50:1234–1248

    Article  Google Scholar 

  • Sobolev NV, Logvinova AM, Zedgenizov DA, Pokhilenko NP, Malygina EV, Kuzmin DV, Sobolev AV (2009b) Petrogenetic significance of minor elements in olivines from diamonds and peridotite xenoliths from kimberlites of Yakutia. Lithos 112S:701–713

    Article  Google Scholar 

  • Sobolev SV, Sobolev AV, Kuzmin DV et al (2011) Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477:312–316

    Article  Google Scholar 

  • Stachel T, Harris JW (2009) Formation of diamond in the Earth’s mantle. J Phys Condens Mat 21:364206

    Article  Google Scholar 

  • Sterner SM, Bodnar RJ (1989) Synthetic fluid inclusions. VII. Re-equilibration of fluid inclusions in quartz during laboratory-simulated metamorphic burial and uplift. J Metamorph Geol 7:243–260

    Article  Google Scholar 

  • Stolper E, Sherman S, Garcia MO, Baker MB, Seaman C (2004) Glass in the submarine section of the HSDP2 drill core, Hilo, Hawaii. Geochem Geophys Geosyst 5:Q07G15

    Google Scholar 

  • Straub SM, Layne GD (2003) The systematics of chlorine, fluorine and water in Izu arc front volcanic rocks: implications for volatile recycling in subduction zones. Geochim Cosmochim Acta 67:4179–4203

    Article  Google Scholar 

  • Stroncik NA, Haase KM (2004) Chlorine in oceanic intraplate basalts: constraints on mantle sources and recycling processes. Geology 32:945–948

    Article  Google Scholar 

  • Sudo A, Tatsumi Y (1990) Phlogopite and K-amphibole in the upper mantle: implication for magma genesis in subduction zones. Geophys Res Lett 17:29–32

    Article  Google Scholar 

  • Svensen H, Jamtveit B, Yardley BWD, Engvik AK, Austrheim H, Broman C (1999) Lead and bromine enrichment in eclogite-facies fluids: extreme fractionation during lower-crustal hydration. Geology 27:467–470

    Article  Google Scholar 

  • Tomlinson EL, Jones AP, Harris JW (2006) Co-existing fluid and silicate inclusions in mantle diamond. Earth Planet Sci Lett 250:581–595

    Article  Google Scholar 

  • Touret JLR, Huizenga JM (2012) Fluid-assisted granulite metamorphism: a continental journey. Gondwana Res 22:224–235

    Article  Google Scholar 

  • Touron S, Renac C, O’Reilly SY, Cottin JY, Griffin WL (2008) Characterization of the metasomatic agent in mantle xenoliths from Deve’s, Massif Central (France) using coupled in situ trace-element and O, Sr and Nd isotopic compositions. Geol Soc London Spec Publ 293:177–196

    Article  Google Scholar 

  • Trial AF, Rudnick RL, Ashwal LD, Henry DJ, Bergman SC (1984) Fluid inclusions in mantle xenoliths from Ichinomegata, Japan: evidence for subducted H2O. EOS Transations. Am Geophys Union 65:306

    Google Scholar 

  • Trommsdorff V, Skippen G (1986) Vapour loss (“boiling”) as a mechanism for fluid evolution in metamorphic rocks. Contrib Mineral Petrol 94:317–322

    Article  Google Scholar 

  • Tumiati S, Fumagalli P, Tiraboschi C, Poli S (2013) An experimental study on COH-bearing peridotite up to 3.2 GPa and implications for crust-mantle recycling. J Petrol 54:453–479

    Article  Google Scholar 

  • Vannucci R, Piccardo GB, Rivalenti G, Zanetti A, Rampone E, Ottolini L, Oberti R, Mazzucchelli M, Bottazzi P (1995) Origin of LREE-depleted amphiboles in the subcontinental mantle. Geochim Cosmochim Acta 59:1763–1771

    Article  Google Scholar 

  • Vaselli O, Downes H, Thirwall M, Dobosi G, Coradossi N, Seghedi I, Szakacs A, Vannucci R (1995) Ultramafic xenoliths in Plio-Pleistocene alkali basalts from the eastern Transylvanian Basin: depleted mantle enriched by vein metasomatism. J Petrol 36:23–53

    Article  Google Scholar 

  • Viti C, Frezzotti ML (2000) Re-equilibration of glass and CO2 inclusions in xenolith olivine: a TEM study. Am Mineral 2000:1390–1396

    Article  Google Scholar 

  • Viti C, Frezzotti ML (2001) Transmission electron microscopy applied to fluid inclusion investigations. Lithos 55:125–138

    Article  Google Scholar 

  • Vukadinovic D, Edgar AD (1993) Phase relations in the phlogopite-apatite system at 20 kbar: implications for the role of fluorine in mantle melting. Contrib Mineral Petrol 114:247–254

    Article  Google Scholar 

  • Wallace ME, Green DH (1988) An experimental determination of primary carbonatite magma composition. Nature 335:343–345

    Article  Google Scholar 

  • Wallace ME, Green DH (1991) The effect of bulk rock composition on the stability of amphibole in the Upper Mantle. Mineral Petrol 44:1–19

    Article  Google Scholar 

  • Wanamaker BJ, Evans B (1989) Mechanical re-equilibration of fluid inclusions in San Carlos olivine by power law creep. Contrib Mineral Petrol 102:102–111

    Article  Google Scholar 

  • Wasson JT (1985) Meteorites, their record of early solar-system history. WH Freeman, New York

    Google Scholar 

  • Waters FG, Erlank AJ (1986) Isotopic evidence for an ancient component in metasomatised peridotites and MARID rocks from Kimberley kimberlites, South Africa. Terra Cognita 6:242

    Google Scholar 

  • Watson EB, Brenan JM (1987) Fluids in the lithosphere. 1. Experimentally determined wetting characteristics of CO2-H2O fluids and their implications for fluid transport, host-rock physical properties, and fluid inclusion formation. Earth Planet Sci Let 85:594–615

    Google Scholar 

  • Webster JD (1990) Partitioning of F between H2O ± CO2 fluids and topaz rhyolite melt: implications for mineralizing magmatic-hydrothermal fluids in F-rich granitic systems. Contrib Mineral Petrol 104:424–438

    Article  Google Scholar 

  • Webster JD (1992) Fluid-melt interactions involving Cl-rich granites: experimental study from 2 to 8 kbar. Geochim Cosmochim Acta 56:679–687

    Article  Google Scholar 

  • Webster JD, Baker DR, Aiuppa A (2018) Halogens in mafic and intermediate-silica content magmas. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 307–430

    Google Scholar 

  • Weiss Y, Kessel R, Griffin WL, Kiflawi I, Klein-BenDavid O, Bell DR, Harris J, Navon O (2009) A new model for the evolution of diamond forming fluids: evidence from microinclusion-bearing diamonds from Kankan, Guinea. Lithos 112:660–674

    Article  Google Scholar 

  • Weiss Y, McNeill J, Pearson G, Nowell GM, Ottley CJ (2015) Highly saline fluids from a subducting slab as the source for fluid-rich diamonds. Nature 524:339–345

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  • Witt-Eickschen G, Harte B (1994) Distribution of trace elements between amphibole and clinopyroxene from mantle peridotites of the Eifel (Western Germany): an ion-microprobe study. Chem Geol 117:235–250

    Article  Google Scholar 

  • Wunder B, Melzer S (2003) Experimental evidence on phlogopitic mantle metasomatism induced by phengite dehydration. Eur J Mineral 15:641–647

    Article  Google Scholar 

  • Wyllie PJ (1989) Origin of carbonatites: evidence from phase equilibrium studies. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, Boston, pp 500–545

    Google Scholar 

  • Wyllie PJ, Ryabchikov ID (2000) Volatile components, magmas, and critical fluids in upwelling mantle. J Petrol 41:1195–1206

    Article  Google Scholar 

  • Wyllie PJ, Tuttle OF (1961) Experimental investigation of silicate systems containing two volatile components: Pt. II. The effects of NH3 and HF, in addition to H2O on the melting temperatures of albite and granite. Am J Sci 259:128–143

    Article  Google Scholar 

  • Wyllie PJ, Tuttle OF (1964) Experimental investigations of silicate systems containing two volatile components: Part III. The effects of SO3, P2O5, HCl and Li2O, in addition to H2O, on the melting temperatures of albite and granite. Am J Sci 262:930–939

    Article  Google Scholar 

  • Zaccarini F, Stumpfl EF, Garuti G (2004) Zirconolite and Zr-Th-U minerals in chromitites of the Finero Complex, Western Alps, Italy: evidence for carbonatite-type metasomatism in a subcontinental mantle plume. Can Mineral 42:1825–1845

    Article  Google Scholar 

  • Zanetti A, Vannucci R, Bottazzi P, Oberti R, Ottolini L (1996) Infiltration metasomatism at Lherz as monitored by systematic ion-microprobe investigations close to an hornblendite vein. Chem Geol 134:113–133

    Article  Google Scholar 

  • Zanetti A, Mazzucchelli M, Rivalenti G, Vannucci R (1999) The Finero phlogopite-peridotite massif: an example of subduction-related metasomatism. Contrib Mineral Petrol 134:107–122

    Article  Google Scholar 

  • Zedgenizov DA, Rege S, Griffin WL, Kagi H, Shatsky VS (2007) Compositional variations of micro-inclusions in fluid-bearing diamonds from Udachnaya kimberlite pipe as revealed by LA-ICP-MS. Chem Geol 240:151–162

    Article  Google Scholar 

Download references

Acknowledgements

We thank Daniel Harlov for his patience, and his thoughtful editorial handling of the manuscript. We are extremely grateful to W. Griffin, J. Konzett, and an anonymous reviewer for thoughtful comments which have considerably improved the manuscript. We thank D. Kamenetsky, M.G. Kopylova, J.L. Mosenfelder, and E.M. Smith for making illustrations available for this chapter. This work was supported by the Italian PRIN grant 2010PMKZX7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luce Frezzotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frezzotti, M.L., Ferrando, S. (2018). The Role of Halogens in the Lithospheric Mantle. In: Harlov, D., Aranovich, L. (eds) The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. Springer Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-61667-4_13

Download citation

Publish with us

Policies and ethics