Analysis of Transposable Elements Expressed in the Gonads of the Siberian Sturgeon

  • Frédéric Brunet
  • Alexia Roche
  • Domitille Chalopin
  • Magali Naville
  • Christophe Klopp
  • Denise Vizziano-Cantonnet
  • Jean-Nicolas Volff


Transposable elements (TEs) are mobile and repeated sequences that are major factors of diversity and evolution in genomes. We report here through the analysis of gonad transcriptomes of the Siberian sturgeon Acipenser baerii, a non-teleost ray-finned fish, that sturgeon genomes contain many families of TEs, which are expressed in gonads and might be involved in the evolution of this divergent fish lineage. The high diversity of TEs observed in sturgeons, which is also found in teleost fish, coelacanth, and amphibians but not in birds and mammals, strongly supports that many TE families were present in ancestral vertebrate genomes. Two types of transposable elements potentially differing in their evolutionary dynamics have been further characterized: DIRS-like retrotransposons, with a single lineage mainly transmitted vertically, and Tc1/mariner DNA transposons, with multiple lineages and the possible involvement of horizontal transfer. This first global analysis is a new step toward the understanding of TE evolution and evolutionary impact in non-teleost ray-finned fish and will help to annotate the upcoming sequences of the large sturgeon genomes.


Transposable elements Retrotransposons DNA transposons Whole genome duplications Actinopterygii Teleostei Sturgeons 




Transposable elements


The TE repertoire in a genome


Complementary DNA


Base pair


Amino acids


  1. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  2. Berthelot C, Brunet F, Chalopin D et al (2014) The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun 5:3657CrossRefPubMedPubMedCentralGoogle Scholar
  3. Biémont C, Vieira C (2006) Genetics: junk DNA as an evolutionary force. Nature 443:521–524CrossRefPubMedGoogle Scholar
  4. Birstein VJ, Bemis WE, Waldman JR (1997) The threatened status of acipenseriformes species: a summary. Environ Biol Fishes 48:427–435CrossRefGoogle Scholar
  5. Böhne A, Brunet F, Galiana-Arnoux D et al (2008) Transposable elements as drivers of genomic and biological diversity in vertebrates. Chromosome Res 16:203–215CrossRefPubMedGoogle Scholar
  6. Burns KH, Boeke JD (2012) Human transposon tectonics. Cell 149:740–752CrossRefPubMedPubMedCentralGoogle Scholar
  7. Casane D, Laurenti P (2013) Why coelacanths are not ‘living fossils’: a review of molecular and morphological data. Bioessays 35:332–338CrossRefPubMedGoogle Scholar
  8. Chalopin D, Naville M, Plard F et al (2015) Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol Evol 7:567–580CrossRefPubMedPubMedCentralGoogle Scholar
  9. Coyne JA, Orr HA (1998) The evolutionary genetics of speciation. Philos Trans R Soc Lond B Biol Sci 353:287–305CrossRefPubMedPubMedCentralGoogle Scholar
  10. de Koning APJ, Gu W, Castoe TA, Batzer MA, Pollock DD (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 7:e1002384CrossRefPubMedPubMedCentralGoogle Scholar
  11. Deininger PL, Moran JV, Batzer MA et al (2003) Mobile elements and mammalian genome evolution. Curr Opin Genet Dev 13:651–658CrossRefPubMedGoogle Scholar
  12. Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35:41–48CrossRefPubMedGoogle Scholar
  13. Diana JS (2009) Aquaculture production and biodiversity conservation. Bio Science 59:27–38Google Scholar
  14. Ellison CE, Bachtrog D (2013) Dosage compensation via transposable element mediated rewiring of a regulatory network. Science 342:846–850CrossRefPubMedPubMedCentralGoogle Scholar
  15. Erickson IK, Cantrell MA, Scott L et al (2011) Retrofitting the genome: L1 extinction follows endogenous retroviral expansion in a group of muroid rodents. J Virol 85:12315–12323CrossRefPubMedPubMedCentralGoogle Scholar
  16. Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405CrossRefPubMedPubMedCentralGoogle Scholar
  17. Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fontana F, Bruch RM, Binkowski FP (2004) Karyotype characterization of the lake sturgeon, Acipenser fulvescens (Rafinesque 1817) by chromosome banding and fluorescent in situ hybridization. Gen Natl Res Counc Can 47:742–746Google Scholar
  19. Fontana F, Congiu L, Mudrak VA et al (2008) Evidence of hexaploid karyotype in shortnose sturgeon. Gen Natl Res Counc Can 51:113–119Google Scholar
  20. Forconi M, Chalopin D, Barucca M et al (2014) Transcriptional activity of transposable elements in Coelacanth. J Exp Zool (Mol Dev Evol) 322B:379–389CrossRefGoogle Scholar
  21. Froese R, Pauly D (2008) Fish Base. Available at
  22. Furano AV, Duvernell DD, Boissinot S (2004) L1 (LINE-1) retrotransposon diversity differs dramatically between mammals and fish. Trends Genet 20:9–14CrossRefPubMedGoogle Scholar
  23. Gardiner BG (1984) Sturgeons as Living Fossils. In: Eldredge N, Stanley SM (eds) Living Fossils. Springer, New-York, pp 148–152CrossRefGoogle Scholar
  24. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224CrossRefPubMedGoogle Scholar
  25. Guindon S, Dufayard JF, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefPubMedGoogle Scholar
  26. Hancks DC, Kazazian HH Jr (2012) Active human retrotransposons: variation and disease. Curr Opin Genet Dev 22:191–203CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hale MC, Jackson JR, DeWoody JA (2010) Discovery and evaluation of candidate sex-determining genes and xenobiotics in the gonads of lake sturgeon (Acipenser fulvescens). Genetica 138:745–756CrossRefPubMedGoogle Scholar
  28. Hurley IA, Mueller RL, Dunn KA et al (2007) A new time-scale for ray-finned fish evolution. Proc Biol Sci 274:489–498CrossRefPubMedGoogle Scholar
  29. Jaillon O, Aury JM, Brunet F et al (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate protokaryotype. Nature 431:946–957CrossRefPubMedGoogle Scholar
  30. Kapusta A, Kronenberg Z, Lynch VJ et al (2013) Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet 9:e1003470CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632CrossRefPubMedGoogle Scholar
  32. Kraaijeveld K (2010) Genome size and species diversification. Evol Biol 37:227–233CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kuraku S, Qiu H, Meyer A (2012) Horizontal transfers of Tc1 elements between teleost fishes and their vertebrate parasites, lampreys. Genome Biol Evol 4:929–936CrossRefPubMedPubMedCentralGoogle Scholar
  34. Le Rouzic A, Capy P (2006) Population genetics models of competition between transposable element subfamilies. Genetics 174:785–793CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lien S, Koop BF, Sandve SR et al (2016) The Atlantic salmon genome provides insights into rediploidization. Nature 533:200–205CrossRefPubMedGoogle Scholar
  36. Ludwig A, Belfiore NM, Pitra C et al (2001) Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus). Genetics 158:1203–1215PubMedPubMedCentralGoogle Scholar
  37. Lynch VJ, Leclerc RD, May G et al (2011) Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet 43:1154–1159CrossRefPubMedGoogle Scholar
  38. McClintock B (1956) Controlling elements and the gene. Cold Spring Harb Symp Quant Biol 21:197–216CrossRefPubMedGoogle Scholar
  39. Meyer A, Schartl M (1999) Gene and genome duplications in vertebrates: The one-to-four (−to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol 11:699–704CrossRefPubMedGoogle Scholar
  40. Naville M, Chalopin D, Casane D, Laurenti P, Volff JN (2015) The coelacanth: Can a "living fossil" have active transposable elements in its genome? Mob Genet Elements. 5:55–59CrossRefPubMedPubMedCentralGoogle Scholar
  41. Nekrutenko A, Li WH (2001) Transposable elements are found in a large number of human protein-coding genes. Trends Genet 17:619–621CrossRefPubMedGoogle Scholar
  42. Nelson JS (2006) Fishes of the world, 4th edn. Wiley, Hoboken, New JerseyGoogle Scholar
  43. Ohno S (1970) Evolution of gene duplication. Springer, New-YorkCrossRefGoogle Scholar
  44. Pé J, Jeyakani J, Bourque G (2013) The majority of primate-specific regulatory sequences are derived from transposable elements. PLoS Genet 9:e1003504CrossRefGoogle Scholar
  45. Peng Z, Ludwig A, Wang D, Diogo R, Wei Q, He S (2007) Age and biogeography of major clades in sturgeons and paddleWshes (Pisces: Acipenseriformes). Mol Phyl Evol 42:854–862CrossRefGoogle Scholar
  46. Pikitch EK, Doukakis P, Lauck L et al (2006) Status, trends and management of sturgeon and paddlefish fisheries. Fish and Fisheries 6:233–265CrossRefGoogle Scholar
  47. Pujolar JM, Astolfi L, Boscari E et al (2013) Tana1, a new putatively active Tc1-like transposable element in the genome of sturgeons. Mol Phylogenet Evol 66:223–232CrossRefPubMedGoogle Scholar
  48. Ravi V, Venkatesh B (2008) Rapidly evolving fish genomes and teleost diversity. Curr Opin Genet Dev 18:544–550CrossRefPubMedGoogle Scholar
  49. Rebollo R, Romanish MT, Mager DL (2012) Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet 46:21–42CrossRefPubMedGoogle Scholar
  50. Santini F, Harmon LJ, Carnevale G et al (2009) Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray-finned fishes. BMC Evol Biol 9:194CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sievers F, Higgins DG (2014) Clustal Omega, accurate alignment of very large numbers of sequences. Methods Mol Biol 1079:105–116CrossRefPubMedGoogle Scholar
  52. Sinzelle L, Izsvák Z, Ivics Z (2009) Molecular domestication of transposable elements: from detrimental parasites to useful host genes. Cell Mol Life Sci 66:1073–1093CrossRefPubMedGoogle Scholar
  53. Smit AFA, Hubley R, Green P. RepeatMasker Open-4.0. 2013–2015.
  54. Taylor JS, Braasch I, Frickey T et al (2003) Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Res 13:382–390CrossRefPubMedPubMedCentralGoogle Scholar
  55. Volff JN (2005) Genome evolution and biodiversity in teleost fish. Heredity 94:280–294CrossRefPubMedGoogle Scholar
  56. Volff JN (2006) Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays 28:913–922CrossRefPubMedGoogle Scholar
  57. Volff JN, Bouneau L, Ozouf-Costaz C et al (2003) Diversity of retrotransposable elements in compact pufferfish genomes. Trends Genet 19:674–678CrossRefPubMedGoogle Scholar
  58. Warren IA, Naville M, Chalopin D et al (2015) Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates. Chromosome Res 23:505–531CrossRefPubMedGoogle Scholar
  59. Waterhouse AM, Procter JB, Martin DMA et al (2009) Jalview version 2: a multiple sequence alignment and analysis workbench. Bioinformatics 25:1189–1191CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wicker T, Sabot F, Hua-Van A et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982CrossRefPubMedGoogle Scholar
  61. Yuana Y-W, Wessler SR (2011) The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. Proc Nat Acad Sci USA 108:7884–7889CrossRefGoogle Scholar
  62. Zhang HH, Feschotte C, Han MJ et al (2014) Recurrent horizontal transfers of Chapaev transposons in diverse invertebrate and vertebrate animals. Genome Biol Evol 6:1375–1386CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Frédéric Brunet
    • 1
  • Alexia Roche
    • 1
  • Domitille Chalopin
    • 1
  • Magali Naville
    • 1
  • Christophe Klopp
    • 2
    • 3
  • Denise Vizziano-Cantonnet
    • 4
  • Jean-Nicolas Volff
    • 1
  1. 1.Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1LyonFrance
  2. 2.Genotoul BioInformatic, INRA, UR 875 Unité de Mathématique et Informatique Appliquées, Bioinformatics plateforme Toulouse Midi-Pyrenees, Auzeville, CS 52627Castanet-TolosanFrance
  3. 3.Plate-forme SIGENAE, INRA, GenPhyse, Auzeville, CS 52627Castanet-TolosanFrance
  4. 4.Facultad de Ciencias, Laboratorio de Fisiología de la Reproducción y Ecología de PecesMontevideoUruguay

Personalised recommendations