Some Basic Methods in Respiratory Physiology Studies Applied in the Siberian Sturgeon

  • Guy Nonnotte
  • Patrick Williot
  • Karine Pichavant-Rafini
  • Michel Rafini
  • Liliane Nonnotte


Numerous studies have shown that extracellular acid-base status in fish is greatly sensitive to small variations of temperature, PCO2, and bicarbonate system in water. Whereas control of temperature and oxygenation of the environmental water is a usual practice in physiological studies on fish and even though water is directly in contact with the gills, the main site of acid-base and ionic regulations, the environmental acid-base status (pH, alkalinity, PCO2) has rarely been paid much attention.

The purpose of this chapter is to recall and to describe a methodological approach to manage the water acid-base system which must be perfectly controlled to study numerous physiological regulation mechanisms in fishes.

Moreover, a particular attention was dedicated to different methods used to determine the extracellular acid-base balance in fish. At present, the use of automatic clinical blood analyzers allows to obtain either blood PO2, PCO2, and pH simultaneously or the total CO2 in plasma if using a CO2 analyzer. But the use of these devices remains problematic at a temperature lower than 37 °C. The aim of this review is also to recall that the best results are obtained using the Astrup interpolation method (1956) which was applied in the Siberian sturgeon research, respectively, by Salin (La toxicité de l’ammoniaque chez l’esturgeon sibérien, Acipenser baerii: effets morphologiques, physiologiques, métaboliques d’une exposition à des doses sblétales et létales. Thèse No 749, Université Bordeaux I, p 134, 1992), Nonnotte et al. (Respir Physiol 91:71–82, 1993), and Maxime et al. (Respir Physiol 100:203–212, 1995).


Methodology Acid-base Water alkalinity pH Bicarbonate Carbon dioxide partial pressure Acipenser baerii 



Ions H+ activity


Carbon dioxide solubility


Oxygen solubility


Buffer value of the blood = ΔHCO3]/ΔpH


Concentration of the added strong acid


Carbonate ion


Ions H+ activity coefficient


Carbonic acid


Bicarbonate ion


Equilibrium constant


Acid normality (0.1 N)


Carbon dioxide partial pressure in kPa


−log aH or aH = 10−pH


Oxygen partial pressure in kPa


Oxygen partial pressure in water in kPa


Blood pH


Carbon dioxide partial pressure in water in kPa


Temperature in °C


Alkalinity in mEq L−1


Added acid volume in μL


Acid volume added at the equivalent point


Water sample volume in mL or μL



We wish to gratefully acknowledge the efficient help of Dr. Nonnotte Philippe, Research Engineer Geochemistry/TI-MS at the Geosciences Department of the Brest University (France), IUEM, UMR 6538, and to Christophe Nonnotte (S/A Flight Tests Aircraft Manager BSEMD) Airbus Industry, Toulouse (France), in drawing the figures.

Notes of the Authors

Respiration is the process by which animals take in oxygen necessary for cellular metabolism and release carbon dioxide that accumulates in their body as a result of the expenditure of energy. Techniques used for measuring oxygen consumption were described in Chaps.  18 and  52. This chapter concerns carbon dioxide release and acid-base status for the sturgeon Acipenser baerii only.


  1. Astrup P (1956) A simple electrometric technique for the determination of carbon dioxide tension in blood and plasma, total content of carbon dioxide in plasma and bicarbonate content in ‘separated’ plasma at a fixed dioxide tension (40 mm hg). Scand J Clin Invest 8:33–43CrossRefPubMedGoogle Scholar
  2. Belanger JM, Son JH, Laugero KD, Moberg GP, Doroshov SI, Lankford SE, Cech JJ (2001) Effects of short-term management stress and ACTH injections on plasma cortisol levels in cultured white sturgeon, Acipenser transmontanus. Aquaculture 203:165–176CrossRefGoogle Scholar
  3. Boutilier RG, Iwama GK, Heming TA, Randall DJ (1985) The apparent pK of carbon acid in rainbow trout blood plasma between 5 and 15°C. Respir Physiol 61:237–254CrossRefPubMedGoogle Scholar
  4. Brun-Pascaud M, Gaudebout C, Blayo MC, Pocidalo JJ (1982) Arterial blood gases and acid-base status in awake rats. Respir Physiol 48:45–57CrossRefPubMedGoogle Scholar
  5. Cameron JN (1971) Rapid method for determination of total carbon dioxide in small blood samples. J Appl Physiol 31:632–634CrossRefPubMedGoogle Scholar
  6. Claiborne JB, Heisler N (1984) Acid-base regulation and ion transfers in the carp (Cyprinus carpio): pH compensation during and after exposure to environmental hypercapnia. J Exp Biol 108:25–43Google Scholar
  7. Crocker CE, Farrell AP, Gamperl AK, Cech JJ (2000) Cardio-respiratory responses of white sturgeon to environmental hypercapnia. Am J Phys 279:R617–R628Google Scholar
  8. Culberson C, Pytkowicz RM, Hawley JE (1970) Seawater alkalinity determination by the pH method. J Mar Res 28:15–21Google Scholar
  9. Davenport HW (1969) The ABC of acid-base chemistry. Univ Press, Chicago, p 119Google Scholar
  10. Dejours P, Armand J, Gendner JP (1978) Importance de la regulation de l’équilibre acide-base de l’eau ambiante pour l’étude des échanges respiratoires et ioniques des animaux aquatiques. C R Acad Sci Paris 287:1397–1399Google Scholar
  11. Dejours P (1981) Principles of comparative respiratory physiology. Elsevier, Amsterdam, New York, Oxford, p 265Google Scholar
  12. Di Marco P, McKenzie DJ, Mandich A, Bronzi P, Cataldi E, Cataudella S (1999) Influence of sampling conditions on blood chemistry values of Adriatic sturgeon Acipenser naccarii. J Appl Ichtyol 15:73–77CrossRefGoogle Scholar
  13. Gaumet F, Boeuf G, Truchot JP, Nonnotte G (1994) Effects of environmental water salinity on blood acid-base status in juvenile turbot (Scophthalmus maximus L.) Comp Biochem Physiol 109A:985–994CrossRefGoogle Scholar
  14. Gran G (1952) Determination of the equivalence point in potentiometric precipitation titrages part II. Analyst 77:661–671CrossRefGoogle Scholar
  15. Gran G, Johansson A, Johansson S (1981) Automatic titrage by stepwise addition of equal volumes of titrant in potentiometric precipitation titrages part VII. Analyst 106:1109–1118CrossRefGoogle Scholar
  16. Heisler N (1978) Bicarbonate exchange between body compartments after changes of temperature in the larger spotted dogfish (Scyliorhinus stellaris). Respir Physiol 33:145–160CrossRefPubMedGoogle Scholar
  17. Heisler N (1984) Acid-base regulation in fishes. In: Ws H, Randall DJ (eds) Fish physiology, vol 10. Pt A. Academic Press, London New York, pp 315–401Google Scholar
  18. Leon K, Pichavant-Rafini K, Quemener E, Sébert P, Egreteau PY, Ollivier H, Carré JL, L’Her E (2012) Oxygen blood transport during experimental sepsis: effect of hypothermia. Crit Care Med 40:912–918CrossRefPubMedGoogle Scholar
  19. Maxime V, Nonnotte G, Peyraud C, Williot P, Truchot JP (1995) Circulatory and respiratory effects of an hypoxic stress in the Siberian sturgeon. Respir Physiol 100:203–212CrossRefPubMedGoogle Scholar
  20. McEnroe M, Cech JJ (1985) Osmoregulation in juvenile and adult white sturgeon, Acipenser transmontanus. Environ Biol Fish 14:23–30CrossRefGoogle Scholar
  21. Nonnotte G, Maxime V, Truchot JP, Williot P, Peyraud C (1993) Respiratory responses to progressive ambient hypoxia in the sturgeon, Acipenser baerii. Respir Physiol 91:71–82CrossRefPubMedGoogle Scholar
  22. Peters JP and Van Slyke DD (1931) Quantitative clinical chemistry. Volume 1. Interpretation. Chapter XII: Hemoglobin and oxygen. Chapter XVIII: Carbonic acid and acid-base balance. Baltimore, Md., The Williams and Wilkins CoGoogle Scholar
  23. Randall DJ, McKenzie DJ, Abrami G, Bondiolotte GP, Natiello F, Bronzi P, Bolis L, Agradi E (1992) Effects of diet on responses to hypoxia in sturgeon (Acipenser naccarii). J Exp Biol 170:113–125Google Scholar
  24. Salin D (1992) La toxicité de l’ammoniaque chez l’esturgeon sibérien, Acipenser baerii: effets morphologiques, physiologiques, métaboliques d’une exposition à des doses subtétales et létales. Thèse No 749, Université Bordeaux I, p 134Google Scholar
  25. Salin D, Williot P (1991) Acute toxicity of ammonia to siberian sturgeon Acipenser baerii. In: Williot P (ed) Acipenser. Cemagref Publ, Anthony France, pp 153–167Google Scholar
  26. Shaughnessy CA, Baker DW, Brauner CJ, Morgan JD, Bystriansky JS (2015) Interaction of osmoregulatory and acid-base compensation in white sturgeon (Acipenser transmontanus) during exposure to aquatic hypercarbia and elevated salinity. J Exp Biol 218:2712–2719CrossRefPubMedGoogle Scholar
  27. Severinghaus JW, Bradley AF (1958) Electrodes for blood PO2 and PCO2 determinations. J Appl Physiol 13:515–520CrossRefPubMedGoogle Scholar
  28. Stewart PA (1978) Independent and dependent variables of acid-base control. Respir Physiol 33:9–26CrossRefPubMedGoogle Scholar
  29. Truchot JP, Toulmond A, Dejours P (1980) Blood acid-base balance as a function of water oxygenation: a study at two different ambient CO2 levels in the dogfish, Scyliorhinus canicula. Respir Physiol 41:13–28CrossRefPubMedGoogle Scholar
  30. Truchot JP (1987) Comparative aspects of extracellular Acid-Base balance. Zoophysiology, vol. 20. Springer Verlag, Berlin, Heidelberg, p 262CrossRefGoogle Scholar
  31. Truchot JP (1992) Acid-base changes on transfer between sea and fresh water in the Chinese crab, Eriocheir sinensis. Respir Physiol 87:419–427CrossRefPubMedGoogle Scholar
  32. Williot P (1997) Reproduction de l’esturgeon sibérien (Acipenser baerii Brandt) en élevage: gestion des génitrices, compétence à la maturation in vitro de follicules ovariens et caractéristiques plasmatiques durant l’induction de la ponte. Thèse no 1822, Université Bordeaux I, p 227Google Scholar
  33. Williot P, Comte S, Le Menn F (2011) Stress indicators throughout the reproduction of farmed Siberian sturgeon Acipenser baerii (Brandt) females. Inern Aquat Res 3:31–43Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Guy Nonnotte
    • 1
  • Patrick Williot
    • 2
  • Karine Pichavant-Rafini
    • 3
  • Michel Rafini
    • 4
  • Liliane Nonnotte
    • 1
  1. 1.La Teste de BuchFrance
  2. 2.AudengeFrance
  3. 3.Laboratoire ORPHY EA4324Université de Bretagne OccidentaleBrest Cedex 3France
  4. 4.Département Communication, Anglais, Sciences HumainesUniversité de Bretagne OccidentaleBrest Cedex 3France

Personalised recommendations