Advertisement

Effects of Exposure to Ammonia on Plasma, Brain and Muscle Concentrations of Amino Acids and Adenyl Nucleotides in the Siberian Sturgeon, Acipenser baerii

  • Guy Nonnotte
  • Dominique Salin
  • Patrick Williot
  • Karine Pichavant-Rafini
  • Michel Rafini
  • Liliane Nonnotte
Chapter

Abstract

Neurological disorders appear extremely rapidly for elevated doses of ammonia in Siberian sturgeon baerii. To explain this phenomenon, the effects of ammonia during a 72-h exposure in control conditions and for a lethal and a sublethal doses were examined on the concentration of free amino-acids and adenyl nucleotides in the Siberian sturgeon plasma, muscle and brain.

Results showed an important role of the glutamine-glutamate-aspartate group in the ammonia tissue detoxification process and a drop of ATP in the brain.

Moreover the hypothesis of a detoxification by an increase of urea concentration in plasma was verified, but no significant difference appeared between the three series.

The important role of the synthesis of the aspartate seems specific to Siberian sturgeon.

The implications of this amino-acid in the synaptic transmission and the raise of the concentrations of the other amino-acids may take to secondary processes which represent another form of toxicity. As in mammals, the origin of the ammonia toxicity seems to be metabolic, in particular at the nervous system level for a great part.

Keywords

Siberian sturgeon Acipenser baerii Ammonia toxicity Brain NTP Free amino acids Detoxification Urea 

Notes

Acknowledgments

We are indebted to F. Parrot-Rouleau (Biochemistry Laboratory, CHR Bordeaux, France) for determination of AA and P. Raymond (INRA, Villenave d’Ornon, France) for determination of nucleotides concentrations.

Notes of the Authors

The experiments were performed since 1990 to 1994. They have been investigated in the “Laboratoire de Neurobiologie et Physiologie comparées, CNRS URA 1126 and the University of Bordeaux I, F-33120 Arcachon”, in collaboration with the IRSTEA (formerly CEMAGREF), F-33611 Cestas-Gazinet. The present chapter was a redrawn version of a part of a PHD: Salin D (1992) La toxicité de l’ammoniaque chez l’esturgeon sibérien, Acipenser baerii: effets morphologiques, physiologiques, métaboliques d’une exposition à des doses sblétales et létales. Thèse N° 749, Université Bordeaux I pp134, financial grant of the IRSTEA (formerly CEMAGREF) and CNRS. Director of thesis, Truchot Jean-Paul; supervisors, Nonnotte Guy and Williot Patrick.

References

  1. Arillo A, Margiocco C, Melodia F, Mensi P, Schenone G (1981) Ammonia toxicity mechanism in fish: studies on rainbow trout (Salmo gairdneri R.) Ecotoxicol Environ Saf 5:316–328CrossRefPubMedGoogle Scholar
  2. Begum SJ (1987) Biochemical adaptive responses in glucose metabolism of fish (Tilapia mossambica) during ammonia toxicity. Curr Sci 56(14):705–708Google Scholar
  3. Brown GW, Cohen PP (1960) Activities of urea enzymes in various higher and lower vertebrates. Biochem J 75:82–91CrossRefPubMedGoogle Scholar
  4. Bubien JK, Meade TL (1986) Electrophysiological abnormalities produced by ammonium in isolated perfused brook trout, Salvelinus fontinalis, hearts. J Fish Biol 28:47–53CrossRefGoogle Scholar
  5. Buckley JA, Whitmore CM, Liming BD (1979) Effects of prolonged exposure to ammonia on the blood and the liver glycogen of coho salmon (Oncorhynchus kisutch). Comp Biochem Physiol 63C:297–303Google Scholar
  6. Colt J, Tchobanoglous G (1976) Evaluation of the short-term toxicity of nitrogenous compounds to channel catfish, Ictalurus punctatus. Aquaculture 8:209–224CrossRefGoogle Scholar
  7. Cooper AJL, Plum F (1987) Biochemistry and physiology of brain ammonia. Physiol Rev 67(2):440–517CrossRefPubMedGoogle Scholar
  8. Dabrowska H (1984) Effect of dietary protein on free amino acid content in rainbow trout (Salmo gairdneri R.) muscles. Comp Biochem Physiol 77A:553–556CrossRefGoogle Scholar
  9. Dabrowska H, Wlashow T (1986) Sub-lethal effect of ammonia on certain biochemical and haematological indicators in common carp (Cyprinus carpio L.) Comp Biochem Physiol 83C:179–184Google Scholar
  10. Haywood GP (1983) Ammonia toxicity in teleost fishes: a review. Can Tech Rep Fish Aquat Sci 1177:35Google Scholar
  11. Hillaby BA, Randall DJ (1979) Acute ammonia toxicity and ammonia excretion in rainbow trout (Salmo Gairdneri). J Fish Res Board Can 36:621–629CrossRefGoogle Scholar
  12. Iwata K (1988) Nitrogen metabolism in the mudskipper Periophthalmus cantonensis: changes in free amino-acids and related compounds in various tissues under conditions of ammonia loading with special reference to its high ammonia tolerance. Comp Biochem Physiol 91A:499–508CrossRefGoogle Scholar
  13. Levi G, Morisi G, Coletti A, Catanzaro R (1974) Free amino acid in fish brain: normal levels and changes upon exposure to high ammonia concentrations in vivo and upon incubation of brain slices. Comp Biochem Physiol 49A:623–636CrossRefGoogle Scholar
  14. Medale F, Blanc D, Kaushik SJ (1991) Studies on the nutrition of Siberian sturgeon Acipenser baerii II utilization of dietary non-protein energy by sturgeon. Aquaculture 93:143–154CrossRefGoogle Scholar
  15. Mutch BJC, Banister EW (1983) Ammonia metabolism in exercise and fatigue: a review. Med Sci Sports Exerc 15(1):41–50CrossRefPubMedGoogle Scholar
  16. Nonnotte G, Maxime V, Truchot JP, Williot P, Peyraud C (1993) Respiratory responses to progressive ambient hypoxia in the sturgeon, Acipenser baerii. Respir Physiol 91:71–82CrossRefPubMedGoogle Scholar
  17. Ogata H (1985) Post-feeding changes in distribution of free amino-acids and ammonia in plasma and erythrocytes of carp. Bull Jap Soc Sci Fish 51:1705–1711CrossRefGoogle Scholar
  18. Ogata H, Aral S (1985) Comparison of free amino-acids contents in plasma, whole blood and erythrocytes of carp, coho salmon, rainbow trout and channel catfish. Bull Jap Soc Sci Fish 51:1181–1186CrossRefGoogle Scholar
  19. Ogata H, Murai T (1988) Changes in ammonia and amino-acids levels in the erythrocytes and plasma of the carp, Cyprinus carpio, during passage through the gills. J Fish Biol 33:471–479CrossRefGoogle Scholar
  20. Olson KR, Fromm PO (1971) Excretion of urea by two teleosts exposed to different concentrations of ambient ammonia. Comp Biochem Physiol 40A:999–1007CrossRefGoogle Scholar
  21. Pequin L, Serfaty A (1963) L’excretion ammoniacale chez un téléostéen dulcicole la carpe (Cyprinus carpio). Comp Biochem Physiol 10:315–324CrossRefPubMedGoogle Scholar
  22. Raabe W (1988) Neuronal effects of ammonia. In: Soeters PB, Wilson JHP, Meijer AJ, Homs E (eds) Advances in ammonia metabolism and hepatic encephalopathy. Elsevier Sci Pub, Netherlands, pp 349–355Google Scholar
  23. Ruffier P, Boyle W, Kleinschmidt J (1981) Short-term acute bioassays to evaluate ammonia toxicity and effluent standards. J WPGF 53(3):367–377Google Scholar
  24. Salin D (1992) La toxicité de l’ammoniaque chez l’esturgeon sibérien, Acipenser baerii: effets morphologiques, physiologiques, métaboliques d’une exposition à des doses sublétales et létales. Thèse N° 749, Université Bordeaux I, p 134Google Scholar
  25. Schenone G, Arillo A, Margiocco C, Melodia F, Mensi P (1982) Biochemical bases for environmental adaptation in goldfish (Carassius auratus L.): resistance to ammonia. Ecotoxicol Environ safety 6:479–488CrossRefPubMedGoogle Scholar
  26. Smart GR (1976) The effect of ammonia exposure on gill structure of the rainbow trout (Salmo gairdneri). J Fish Biol 8:471–475CrossRefGoogle Scholar
  27. Smart GR (1978) Investigations of the toxic mechanisms of ammonia to fish gas exchange in rainbow trout exposed to acutely lethal concentrations. J Fish Biol 12:93–104CrossRefGoogle Scholar
  28. Smith HW (1929) The excretion of ammonia and urea by the gills of fish. J Biol Chem 81:727–742Google Scholar
  29. Thurston RV, Russo RC, Smith CE (1978) Acute toxicity of ammonia and nitrite to cutthroat trout fry. Trans Am Fish Soc 107(2):361–368CrossRefGoogle Scholar
  30. Thurston RV, Russo RC, Vinogradov GA (1981) Ammonia toxicity to fishes: effect of pH on the toxicity of the unionized ammonia species. Environ Sci Technol 15:837–840CrossRefGoogle Scholar
  31. Thurston RV, Russo RC, Phillips GR (1983) Acute toxicity of ammonia to fathead minnows (Pimephales promelas). Trans Am Fish Soc 112:705–711CrossRefGoogle Scholar
  32. Vellas F (1979) L’excrétion azotée: métabolisme des composés azotés. In: Nutrition des poissons. Actes du colloque du CNERMA. CNRS Ed, Paris, pp 149–161Google Scholar
  33. Vellas F, Serfaty A (1975) Le metabolism ammoniacal chez un téléostéen dulcicole la carpe (Cyprinus carpio). Cahiers Lab Montereau 2:5–14Google Scholar
  34. Walker CO, Schenker S (1970) Pathogenesis of hepatic encephalopathy with special reference to the role of ammonia. Am J Chin Nutr 23(5):619–632CrossRefGoogle Scholar
  35. Walton MJ, Conwey CB (1977) Aspects of ammoniagenesis in rainbow trout, Salmo gairdneri. Comp Biochem Physiol 57B:143–149Google Scholar
  36. Yokoyama M, Nakazoe J (1991) Effects of dietary protein levels on free amino acid and glutathione contents in the tissue of rainbow trout. Comp Biochem Physiol 99A:203–206Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Guy Nonnotte
    • 1
  • Dominique Salin
    • 2
  • Patrick Williot
    • 3
  • Karine Pichavant-Rafini
    • 4
  • Michel Rafini
    • 5
  • Liliane Nonnotte
    • 1
  1. 1.La Teste de BuchFrance
  2. 2.Saint Médard en JallesFrance
  3. 3.AudengeFrance
  4. 4.Laboratoire ORPHY EA4324Université de Bretagne OccidentaleBrest Cedex 3France
  5. 5.Département Communication, Anglais, Sciences HumainesUniversité de Bretagne OccidentaleBrest Cedex 3France

Personalised recommendations