Chemical Neuroanatomy of the Hypothalamo-Hypophyseal System in Sturgeons

Chapter

Abstract

The preoptic-hypothalamo-hypophyseal system of sturgeons, located at the base of the brain, has a neurosecretory role exerted by hypophysiotropic neurons most of them located in the preoptic and hypothalamic periventricular region. The majority of those cells are of the cerebrospinal fluid-contacting type and exhibit short processes reaching the ventricular lumen. Moreover, the processes of those hypophysiotropic neurons course along the hypothalamic floor toward the hypophysis forming a preoptic-hypothalamo-hypophyseal tract. This chapter summarizes available data on the distribution of several hypophysiotropic factors, such as galanin, neurophysin, somatostatin, or gonadotropin-releasing hormone, in the preoptic-hypothalamo-hypophyseal system of sturgeons obtained by the use of immunohistochemical techniques. Immunoreactive neurons to those substances were found in the preoptic and hypothalamic nuclei, and immunoreactive fibers were observed along the preoptic-hypothalamo-hypophyseal tract and in the hypophysis, indicating their hypophysiotrophic role in the brain of sturgeons. Thus, most of the neuropeptides and neurohormones found in tetrapods are also present in sturgeons, suggesting that their common ancestors already possessed such regulatory systems. Unfortunately, because of the difficulty in approaching the physiology of sturgeons (size, cost, etc.), the number of experimental studies aiming at deciphering the roles of such neuropeptides and neurohormones is very limited, although we can speculate that part of the functions supported by these neurohormones would be similar.

Keywords

Sturgeon Hypothalamus Hypophysis Galanin Somatostatin GnRH 

References

  1. Adrio F, Anadón R, Rodríguez-Moldes I (1999) Distribution of serotonin (5HT)-immunoreactive structures in the central nervous system of two chondrostean species (Acipenser baeri and Huso huso). J Comp Neurol 407:333–348PubMedCrossRefGoogle Scholar
  2. Adrio F, Anadón R, Rodríguez-Moldes I (2002) Distribution of tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) immunoreactivity in the central nervous system of two chondrostean fishes (Acipenser baeri and Huso huso). J Comp Neurol 448:280–297PubMedCrossRefGoogle Scholar
  3. Adrio F, Anadón R, Rodríguez-Moldes I (2008) Distribution of somatostatin immunoreactive neurons and fibres in the central nervous system of a chondrostean, the Siberian sturgeon (Acipenser baeri). Brain Res 1209:92–104PubMedCrossRefGoogle Scholar
  4. Adrio F, Rodríguez MA, Rodríguez-Moldes I (2005) Distribution of galanin-like immunoreactivity in the brain of the Siberian sturgeon (Acipenser baeri). J Comp Neurol 487:54–74PubMedCrossRefGoogle Scholar
  5. Amano M, Amiya N, Hiramatsu M, Tomioka T, Oka Y (2009) Interaction between neuropeptide Y immunoreactive neurons and galanin immunoreactive neurons in the brain of the masu salmon, Oncorhynchus masou. Neurosci Lett 462:33–38PubMedCrossRefGoogle Scholar
  6. Amano M, Oka Y, Aida K, Okumoto N, Kawashima S, Hasegawa Y (1991) Immunocytochemical demonstration of salmon GnRH and chicken GnRH-II in the brain of the Masu salmon. J Comp Neurol 314:587–597PubMedCrossRefGoogle Scholar
  7. Amemiya Y, Sogabe Y, Nozaki M, Takahashi A, Kawauchi H (1999) Somatolactin in the white sturgeon and African lungfish and its evolutionary significance. Gen Comp Endocrinol 114:181–190PubMedCrossRefGoogle Scholar
  8. Amiya N, Amano M, Tabuchi A, Oka Y (2011) Anatomical relations between neuropeptide Y, galanin, and gonadotropin-releasing hormone in the brain of chondrostean, the Siberian sturgeon Acipenser baeri. Neurosci Lett 503:87–92PubMedCrossRefGoogle Scholar
  9. Anglade I, Wang Y, Jensen J, Tramu G, Kah O, Conlon JM (1994) Characterization of trout galanin and its distribution in trout brain and pituitary. J Comp Neurol 350:63–74PubMedCrossRefGoogle Scholar
  10. Arai R, Onteniente B, Trembleau A, Landry M, Calas A (1990) Hypothalamic galanin-immunoreactive neurons projecting to the posterior lobe of the rat pituitary: a combined retrograde tracing and immunohistochemical study. J Comp Neurol 299:405–420PubMedCrossRefGoogle Scholar
  11. Arochena M, Anadón R, Díaz-Regueira SM (2004) Development of vimentin and glial fibrillary acidic protein immunoreactivities in the brain of gray mullet (Chelon labrosus), an advanced teleost. J Comp Neurol 469:413–436PubMedCrossRefGoogle Scholar
  12. Baker BI, Bird DJ (2002) Neuronal organization of the melanin-concentrating hormone system in primitive actinopterygians: evolutionary changes leading to teleosts. J Comp Neurol 442:99–114PubMedCrossRefGoogle Scholar
  13. Belenky MA, Kuzik VV, Chernigovskaya EV, Polenov AL (1985) The hypothalamo-hypophysial system in Acipenseriade. X. Corticoliberin-like immunoreacticity in the hypothalamus and hypophysis of Acipenser ruthenus L. Gen Comp Endocrinol 60:20–26Google Scholar
  14. Bohlen P, Brazeau P, Benoit R, Ling N, Esch F, Guillemin R (1980) Isolation and amino acid composition of two somatostatin-like peptides from ovine hypothalamus: somatostatin-28 and somatostatin-25. Biochem Biophys Res Commun 96:725–734PubMedCrossRefGoogle Scholar
  15. Braford MR Jr, Northcutt RG (1983) Organization of the diencephalon and pretectum of the ray-finned fishes. In: Davis RE, Northcutt RG (eds) Neurobiology. Higher brain areas and functions, vol 2. University of Michigan Press, Ann Arbor, pp 117–164Google Scholar
  16. Chang JP, Johnson JD, Sawisky GR, Grey CL, Mitchell G, Booth M, Volk MM, Parks SK, Thompson E, Goss GG, Klausen C, Habibi HR (2009) Signal transduction in multifactorial neuroendocrine control of gonadotropin secretion and synthesis in teleosts-studies on the goldfish model. Gen Comp Endocrinol 161:42–52PubMedCrossRefGoogle Scholar
  17. Chiba A, Honma Y (1994) Neuropeptide Y-immunoreactive structures in the telencephalon and diencephalon of the white sturgeon, Acipenser transmontanus, with special regard to the hypothalamo-hypophyseal system. Arch Histol Cytol 57:77–86PubMedCrossRefGoogle Scholar
  18. Ch'ng JL, Christofides ND, Anand P, Gibson SJ, Allen YS, Su HC, Tatemoto K, Morrison JF, Polak JM, Bloom SR (1985) Distribution of galanin immunoreactivity in the central nervous system and the responses of galanin-containing neuronal pathways to injury. Neuroscience 16:343–354PubMedCrossRefGoogle Scholar
  19. Cornbrooks EB, Parsons RL (1991a) Sexually dimorphic distribution of a galanin-like peptide in the central nervous system of the teleost fish Poecilia latipinna. J Comp Neurol 304:639–657PubMedCrossRefGoogle Scholar
  20. Cornbrooks EB, Parsons RL (1991b) Source of sexually dimorphic galanin-like immunoreactive projections in the teleost fish Poecilia latipinna. J Comp Neurol 304:658–665PubMedCrossRefGoogle Scholar
  21. Coveñas R, Mangas A, Medina LE, Sánchez ML, Aguilar LA, Díaz-Cabiale Z, Narváez JA (2011) Mapping of somatostatin-28 (1-12) in the alpaca diencephalon. J Chem Neuroanat 42:89–98PubMedCrossRefGoogle Scholar
  22. Eigler T, Ben-Shlomo A (2014) Somatostatin system: molecular mechanisms regulating anterior pituitary hormones. J Mol Endocrinol 53:R1–R19PubMedCrossRefGoogle Scholar
  23. Fuxe K, Ogren SO, Jansson A, Cintra A, Harfstrand A, Agnati LF (1988) Intraventricular injections of galanin reduces 5-HT metabolism in the ventral limbic cortex, the hippocampal formation and the frontoparietal cortex of the male rat. Acta Physiol Scand 133:579–581PubMedCrossRefGoogle Scholar
  24. Gai WP, Geffen LB, Blessing WW (1990) Galanin immunoreactive neurons in the human hypothalamus: colocalization with vasopressin-containing neurons. J Comp Neurol 298:265–280PubMedCrossRefGoogle Scholar
  25. Gharaei A, Mahboudi F, Esmaili-Sari A, Edalat R, Adeli A, Keyvanshokooh S (2010) Molecular cloning of cDNA of mammalian and chicken II gonadotropin-releasing hormones (mGnRH and cGnRH-II) in the beluga (Huso huso) and the disruptive effect of methylmercury on gene expression. Fish Physiol Biochem 36:803–817PubMedCrossRefGoogle Scholar
  26. Gómez A, Durán E, Ocaña FM, Jiménez-Moya F, Broglio C, Domezain A, Salas C, Rodríguez F (2009) Observations on the brain development of the sturgeon Acipenser naccarii. In: Carmona R, Domezain A, García-Gallego M, Hernando JA, Rodríguez F, Ruiz-Rejón M (eds) Biology, conservation and sustainable development of sturgeons, Fish & fisheries series, vol 29. Springer, Netherlands, pp 155–174CrossRefGoogle Scholar
  27. González GC, Belenky MA, Polenov AL, Lederis K (1992) Comparative localization of corticotropin and corticotropin releasing factor-like peptides in the brain and hypophysis of a primitive vertebrate, the sturgeon Acipenser ruthenus L. J Neurocytol 21:885–896PubMedCrossRefGoogle Scholar
  28. González A, Moreno N, Morona R, López JM (2003) Somatostatin-like immunoreactivity in the brain of the urodele amphibian Pleurodeles waltl. Colocalization with catecholamines and nitric oxide. Brain Res 965:246–258PubMedCrossRefGoogle Scholar
  29. Grandi G, Chicca M (2004) Early development of the pituitary gland in Acipenser nacarii (Chondrostei, Acipenseriformes): an immunocytochemical study. Anat Embryol 208:311–321PubMedCrossRefGoogle Scholar
  30. Grau EG, Nishioka RS, Young G, Bern HA (1985) Somatostatin-like immunoreactivity in the pituitary and brain of three teleosts fish species: somatostatin as a potential regulator of prolactin cell function. Gen Comp Endocrinol 59:350–357PubMedCrossRefGoogle Scholar
  31. Hansen GH (1971) On the structure and vascularization of the pituitary gland in some primitive actinopterygians (Acipenser, Polyodon, Calamoichthys, Polypterus, Lepisosteus and Amia). Biol Skr 18:1–64Google Scholar
  32. Hansen GH, Hansen BL (1975) Inmmunohistochemical localization of growth hormone and prolactin in the pituitary gland of Acipenser güldenstaedti Brandt (Chondrostei). Acta Zool 56:29–41CrossRefGoogle Scholar
  33. Herrick CJ (1910) The morphology of the forebrain in amphibia and reptilia. J Comp Neurol 20:413–547Google Scholar
  34. Herrick CJ (1933) Morphogenesis of the brain. J Morphol 54:233–258CrossRefGoogle Scholar
  35. Hildahl J, Sandvik GK, Edvardsen RB, Fagernes C, Norberg B, Haug TM, Weltzien FA (2011) Identification and gene expression analysis of three GnRH genes in female Atlantic cod during puberty provides insight into GnRH variant gene loss in fish. Gen Comp Endocrinol 172:458–467PubMedCrossRefGoogle Scholar
  36. Holmqvist BI, Ekström P (1995) Hypophysiotropic systems in the brain of the Atlantic salmon. Neuronal innervation of the pituitary and the origin of pituitary dopamine and nonapeptides identified by means of combined carbocyanine tract tracing and immunocytochemistry. J Chem Neuroanat 8:125–145PubMedCrossRefGoogle Scholar
  37. Horvath TL, Naftolin F, Leranth C, Sahu A, Kalra SP (1996) Morphological and pharmacological evidence for neuropeptide Y-galanin interaction in the rat hypothalamus. Endocrinology 137:3069–3078PubMedCrossRefGoogle Scholar
  38. Ibata Y, Fukui K, Obata HL, Tanaka M, Hisa Y, Sano Y, Ishigami T, Imagawa K, Sin S (1982) Postnatal ontogeny of catecholamine and somatostatin neuron systems in the median eminence of the rat as revealed by a colocalization technique. Brain Res Bull 9:407–415PubMedCrossRefGoogle Scholar
  39. Jansson A, Fuxe K, Eneroth P, Agnati L (1989) Centrally administered galanin reduces dopamine utilization in the median eminence and increases dopamine utilization in the medial neostriatum of the male rat. Acta Physiol Scand 135:199–200PubMedCrossRefGoogle Scholar
  40. Johnston JB (1901) The brain of Acipenser. A contribution to the morphology of the vertebrate brain. Zool Jahrb Abt Anat Ontog 15:59–260Google Scholar
  41. Joss JMP, Dores RM, Crim JW, Beshaw M (1990) Immunocytochemical location of pituitary cells containing ACTH, α-MSH, and β-endorphin in Acipenser transmontanus, Lepisosteus spatula, and Amia calva. Gen Comp Endocrinol 78:459–468PubMedCrossRefGoogle Scholar
  42. Kageyama H, Takenoya F, Hori Y, Yoshida T, Shioda S (2008) Morphological interaction between galanin-like peptide- and dopamine-containing neurons in the rat arcuate nucleus. Regul Pept 145:165–168PubMedCrossRefGoogle Scholar
  43. Kah O, Breton B, Dulka JG, Nunez-Rodriguez J, Peter RE, Corigan A, Rivier JJ, Vale WW (1986) A reinvestigation of the Gn-RH (gonadotropin-releasing hormone) systems in the goldfish brain using antibodies to salmon Gn-RH. Cell Tissue Res 244:327–337PubMedGoogle Scholar
  44. Kah O, Zanuy S, Mañanós E, Anglade I, Carrillo M (1991) Distribution of salmon gonadotrophin releasing-hormone in the brain and pituitary of the sea bass (Dicentrarchus labrax). An immunocytochemical and immunoenzymoassay study. Cell Tissue Res 266:129–136CrossRefGoogle Scholar
  45. Kim JB, Gadsboll V, Whittaker J, Barton BA, Conlon JM (2000) Gastroenteropancreatic hormones (insulin, glucagon, somatostatin, and multiple forms of PYY) from the pallid sturgeon, Scaphirhynchus albus (Acipenseriformes). Gen Comp Endocrinol 120:353–363PubMedCrossRefGoogle Scholar
  46. Kim J, Hayton WL, Schultz IR (2006) Modeling the brain–pituitary–gonad axis in salmon. Mar Environ Res 62(Suppl):S426–S432PubMedCrossRefGoogle Scholar
  47. Kotrschal K, Krautgartner WD, Adam H (1983) Crown cells in the diencephalon of Acipenser ruthenus (Acipenseridae, Chondrostei). J Hirnforsch 24:655–657PubMedGoogle Scholar
  48. Kotrschal K, Krautgartner WD, Adam H (1985) Distribution of aminergic neurons in the brain of the sterlet, Acipenser ruthenus (Chondrostei, Actinopterygii). J Hirnforsch 26:65–72PubMedGoogle Scholar
  49. Langhorne P (1986) Somatostatin stimulates ACTH release in brown trout (Salmo trutta L.) Gen Comp Endocrinol 61:71–75PubMedCrossRefGoogle Scholar
  50. Leprêtre E, Anglade I, Williot P, Vandesande F, Tramu G, Kah O (1993) Comparative distribution of mammalian GnRH (gonadotrophin-releasing hormone) and chicken GnRH-II in the brain of the immature Siberian sturgeon (Acipenser baeri). J Comp Neurol 337:568–583PubMedCrossRefGoogle Scholar
  51. Lescheid DW, Powell JF, Fischer WH, Park M, Craig A, Bukovskaya O, Barannikova IA, Sherwood NM (1995) Mammalian gonadotropin-releasing hormone (GnRH) identified by primary structure in Russian sturgeon, Acipenser gueldenstaedti. Regul Pept 55:299–309PubMedCrossRefGoogle Scholar
  52. Li CJ, Wei QW, Zhou L, Cao H, Zhang Y, Gui JF (2009) Molecular and expression characterization of two somatostatin genes in the Chinese sturgeon, Acipenser sinensis. Comp Biochem Physiol A Mol Integr Physiol 154:127–134PubMedCrossRefGoogle Scholar
  53. Lin XW, Lin HR, Meter RE (1993) Growth hormone and gonadotropin secretion in the common carp (Cyprinus carpio L.): in vitro interactions of gonadotropin-releasing hormone, somatostatin, and the dopamine agonist apomorphine. Gen Comp Endocrinol 89:62–71PubMedCrossRefGoogle Scholar
  54. López FJ, Merchenthaler I, Ching M, Wisniewski MG, Negro-Vilar A (1991) Galanin: a hypothalamic-hypophysiotropic hormone modulating reproductive functions. Proc Natl Acad Sci U S A 88:4508–4512PubMedPubMedCentralCrossRefGoogle Scholar
  55. Maiter DM, Hooi SC, Koenig JI, Martin JB (1990) Galanin is a physiological regulator of spontaneous pulsatile secretion of growth hormone in the male rat. Endocrinology 126:1216–1222PubMedCrossRefGoogle Scholar
  56. Marchant TA, Dulka JG, Peter RE (1989) Relationship between serum growth hormone levels and the brain and pituitary content of immunoreactive somatostatin in the goldfish, Carassius auratus L. Gen Comp Endocrinol 73:458–468PubMedCrossRefGoogle Scholar
  57. Mathieu M, Bruzzone F, Chartrel N, Serra GP, Spiga S, Vallarino M, Vaudry H (2004) Somatostatin in the brain of the cave salamander, Hydromantes genei (Amphibia, Plethodontidae): immunohistochemical localization and biochemical characterization. J Comp Neurol 475:163–176PubMedCrossRefGoogle Scholar
  58. Mechenthaler I (2008) Galanin and the neuroendocrine axes. Cell Mol Life Sci 65:1826–1835PubMedCrossRefGoogle Scholar
  59. Melander T, Hökfelt T, Rökaeus A (1986) Distribution of galaninlike immunoreactivity in the rat central nervous system. J Comp Neurol 248:475–517PubMedCrossRefGoogle Scholar
  60. Mensah ET, Volkoff H, Unniappan S (2010) Galanin systems in non-mammalian vertebrates with special focus on fishes. EXS 102:243–262PubMedGoogle Scholar
  61. Menuet A, Anglade I, Le Guevel R, Pellegrini E, Pakdel F, Kah O (2003) Distribution of aromatase mRNA and protein in the brain and pituitary of female rainbow trout: comparison with estrogen receptor alpha. J Comp Neurol 462:180–193PubMedCrossRefGoogle Scholar
  62. Merchenthaler I (2010) Galanin and the neuroendocrine axes. In: Hökfelt T (ed) Galanin. Springer, Basel, pp 71–86CrossRefGoogle Scholar
  63. Merchenthaler I, Rotoli G, Grignol G, Dudas B (2010) Intimate associations between the neuropeptide Y system and the galanin-immunoreactive neurons in the human diencephalon. Neuroscience 170:839–845PubMedCrossRefGoogle Scholar
  64. Merchenthaler I, Rotoli G, Peroski M, Grignol G, Dudas B (2013) Catecholaminergic system innervates galanin-immunoreactive neurons in the human diencephalon. Neuroscience 238:327–334PubMedCrossRefGoogle Scholar
  65. Moons L, Batten TF, Vandesande F (1991) Autoradiographic distribution of galanin binding sites in the brain and pituitary of the sea bass (Dicentrarchus labrax). Neurosci Lett 123:49–52PubMedCrossRefGoogle Scholar
  66. Murakami Y, Kato Y, Koshiyama H, Inoue T, Yanaihara N, Imura H (1987) Galanin stimulates growth hormone (GH) secretion via GH-releasing factor (GRF) in conscious rats. Eur J Pharmacol 136:415–418PubMedCrossRefGoogle Scholar
  67. Nakane Y, Ikegami K, Iigo M, Ono H, Takeda K, Takahashi D, Uesaka M, Kimijima M, Hashimoto R, Arai N, Suga T, Kosuge K, Abe T, Maeda R, Senga T, Amiya N, Azuma T, Amano M, Abe H, Yamamoto N, Yoshimura T (2013) The saccus vasculosus of fish is a sensor of seasonal changes in day length. Nat Commun 4:2108PubMedCrossRefGoogle Scholar
  68. Nieuwenhuys R (1998) Chondrostean fishes. In: Nieuwenhuys R, Ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates, vol 1. Springer, Berlin, pp 701–757CrossRefGoogle Scholar
  69. Nishii M, Movérus B, Bukovskaya OS, Takahashi A, Kawauchi H (1995) Isolation and characterization of (Pro2)somatostatin-14 and melanotropins from Russian sturgeon, Acipenser gueldenstaedti Brandt. Gen Comp Endocrinol 99:6–12PubMedCrossRefGoogle Scholar
  70. Northcutt RG (1995) The forebrain of gnathostomes: in search of a morphotype. Brain Behav Evol 46:275–318PubMedCrossRefGoogle Scholar
  71. Oka Y, Ichikawa M (1990) Gonadotropin-releasing hormone (GnRH) immunoreactive system in the brain of the dwarf gourami (Colisa lalia) as revealed by light microscopic immunocytochemistry using a monoclonal antibody to common amino acid sequence of GnRH. J Comp Neurol 300:511–522Google Scholar
  72. Olivereau M, Olivereau JM (1991a) Immunocytochemical localization of a galanin-like peptidergic system in the brain and pituitary of some teleost fish. Histochemistry 96:343–354PubMedCrossRefGoogle Scholar
  73. Olivereau M, Olivereau JM (1991b) Galanin-like immunoreactivity is increased in the brain of estradiol- and methyltestosterone-treated eels. Histochemistry 96:487–497PubMedCrossRefGoogle Scholar
  74. Park JJ, Baum MJ, Tobet SA (1997) Sex difference and steroidal stimulation of galanin immunoreactivity in the ferret’s dorsal preoptic area/anterior hypothalamus. J Comp Neurol 389:277–288PubMedCrossRefGoogle Scholar
  75. Patzelt C, Tager HS, Carroll RJ, Steiner DE (1980) Identification of prosomatostatin in pancreatic islets. Proc Natl Acad Sci U S A 77:2410–2414PubMedPubMedCentralCrossRefGoogle Scholar
  76. Pelissero C, Núñez-Rodríguez J, Le Menn F, Kah O (1988) Immunohistochemical investigation of the pituitary of the sturgeon (Acipenser baeri, Chondrostei). Fish Phisiol Biochem 5:109–119CrossRefGoogle Scholar
  77. Piñuela C, Northcutt RG (2007) Immunohistochemical organization of the forebrain in the white sturgeon, Acipenser transmontanus. Brain Behav Evol 69:229–253PubMedCrossRefGoogle Scholar
  78. Polenov AL, Belenky MA, Garlov PE, Konstantinova MS (1976) The hypothalamo-hypophysial system in Acipenseriade. VI. The proximal neurosecretory contact region. Cell Tissue Res 170:129–144PubMedCrossRefGoogle Scholar
  79. Polenov AL, Efimova NA, Konstantinova MS, Senchik YI, Yakovleva IV (1983) The hypothalamo-hypophysial system in Acipenseriade. IX. Formation of monoaminergic neurosecretory cells in the preoptic nucleus region during early ontogeny. Cell Tissue Res 232:651–667Google Scholar
  80. Polenov AL, Garlov PE (1971) The hypothalamo-hypophysial system in Acipenseriade. I. Ultrastructural organization of large neurosecretory terminals (herring bodies) and axoventricular contacts. Z Zellforsch 116:349–374Google Scholar
  81. Polenov AL, Garlov PE (1973) The hypothalamo-hypophysial system in Acipenseriade. III. The neurohypophysis of Acipenser güldenstädti Brandt and Acipenser stellatus Pallas. Z Zellforsch 136:461–477Google Scholar
  82. Polenov AL, Garlov PE, Konstantinova MS, Belenky MA (1972) The hypothalamo-hypophysial system in Acipenseriade. II. Adrenergic structures of the hypophysial neurointermediate complex. Z Zellforsch 128:470–481Google Scholar
  83. Polenov AL, Kuzik VV, Danilova OA (1997) The hypothalamo-hypophysial system in Acipenseriade. XI. Morphological and immunohistochemical analysis of nonapeptidergic and cortociliberin-immunoreactive elements in hypophysectomized starlet (Acipenser ruthenus L.) Gen Comp Endocrinol 105:314–322Google Scholar
  84. Polenov AL, Pavlovic M (1978) The hypothalamo-hypophysial system in Acipenseriade. VII. The functional morphology of the peptidergic neurosecretory cells in the preoptic nucleus of the sturgeon, Acipenser güldenstädti Brandt. A quantitative study. Cell Tissue Res 186:559–570Google Scholar
  85. Power DM, Canario AV, Ingleton PM (1996) Somatotropin release-inhibiting factor and galanin innervation in the hypothalamus and pituitary of seabream (Sparus aurata). Gen Comp Endocrinol 101:264–274PubMedCrossRefGoogle Scholar
  86. Puelles L, Rubenstein JLR (1993) Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. TINS 16:472–479PubMedGoogle Scholar
  87. Rao PD, Murthy CK, Cook H, Peter RE (1996) Sexual dimorphism of galanin-like immunoreactivity in the brain and pituitary of goldfish, Carassius auratus. J Chem Neuroanat 10:119–135PubMedCrossRefGoogle Scholar
  88. Rodríguez MA, Anadón R, Rodríguez-Moldes I (2003) Development of galanin-like immunoreactivity in the brain of the brown trout (Salmo trutta fario), with some observations on sexual dimorphism. J Comp Neurol 465:263–285PubMedCrossRefGoogle Scholar
  89. Rodríguez Díaz MA, Candal E, Santos-Durán GN, Adrio F, Rodríguez-Moldes I (2011) Comparative analysis of met-enkephalin, galanin and GABA immunoreactivity in the developing trout preoptic-hypophyseal system. Gen Comp Endocrinol 173:148–158PubMedCrossRefGoogle Scholar
  90. Rodríguez-Moldes I, Candal E, Huesa G, Adrio F, Anadón R (1997) Distribución de neuronas inmunorreactivas a la Met-encefalina en el SNC del esturión. Rev Neurol 25:1800Google Scholar
  91. Rugarn O, Theodorsson A, Hammar M, Theodorsson E (1999) Effects of estradiol, progesterone, and norethisterone on regional concentrations of galanin in the rat brain. Peptides 20:743–748PubMedCrossRefGoogle Scholar
  92. Rupp B, Northcutt RG (1998) The diencephalon and pretectum of the white sturgeon (Acipenser transmontanus): a cytoarchitectonic study. Brain Behav Evol 51:239–262PubMedCrossRefGoogle Scholar
  93. Rustamov EK (2006a) Organization of diencephalon of the sturgeons. Preoptic area. J Evol Biochem Physiol 42:195–207CrossRefGoogle Scholar
  94. Rustamov EK (2006b) Organization of hypothalamic area of diencephalon in sturgeons. J Evol Biochem Physiol 42:342–353CrossRefGoogle Scholar
  95. Sakanaka M, Magari S, Inoue N (1990) Somatostatin co-localizes with tyrosine hydroxylase in the nerve cells of discrete hypothalamic regions in rats. Brain Res 516:313–317PubMedCrossRefGoogle Scholar
  96. Sathyanesan AG, Chavin W (1967) Hypothalamo-hypophyseal neurosecretory system in the primitive actinopterygian fishes (Holostei and Chondrostei). Acta Anat (Basel) 68:284–299CrossRefGoogle Scholar
  97. Scheffen JR, Splett CL, Desotelle JA, Bauer-Dantoin AC (2003) Testosterone-dependent effects of galanin on pituitary luteinizing hormone secretion in male rats. Biol Reprod 68:363–369PubMedCrossRefGoogle Scholar
  98. Schindler M, Humphrey PP, Emson PC (1996) Somatostatin receptors in the central nervous system. Prog Neurobiol 50:9–47PubMedCrossRefGoogle Scholar
  99. Shen ES, Hardenburg JL, Meade EH, Arey BJ, Merchenthaler I, López FJ (1999) Estradiol induces galanin gene expression in the pituitary of the mouse in an estrogen receptor alpha-dependent manner. Endocrinology 140:2628–2631PubMedCrossRefGoogle Scholar
  100. Sherwood NM, Doroshov S, Lance V (1991) Gonadotropin-releasing hormone (GnRH) in bony fish that are phylogenetically ancient: reedfish (Calamoichthys calabaricus), sturgeon (Acipenser transmontanus), and alligator gar (Lepisosteus spatula). Gen Comp Endocrinol 84:44–57PubMedCrossRefGoogle Scholar
  101. Smeets WJAJ, Nieuwenhuys R, Roberts BL (1983) The central nervous system of cartilaginous fishes. Structure and functional correlations. Springer Verlag, New YorkCrossRefGoogle Scholar
  102. Splett CL, Scheffen JR, Desotelle JA, Plamann V, Bauer-Dantoin AC (2003) Galanin enhancement of gonadotropin-releasing hormone-stimulated luteinizing hormone secretion in female rats is estrogen dependent. Endocrinology 144:484–490PubMedCrossRefGoogle Scholar
  103. Sueiro C, Carrera I, Ferreiro S, Molist P, Adrio F, Anadón R, Rodríguez-Moldes I (2007) New insights on Saccus vasculosus evolution: a developmental and immunohistochemical study in elasmobranchs. Brain Behav Evol 70:187–204PubMedCrossRefGoogle Scholar
  104. Takenoya F, Funahashi H, Matsumoto H, Ohtaki T, Katoh S, Kageyama H, Suzuki R, Takeuchi M, Shioda S (2002) Galanin-like peptide is co-localized with alpha-melanocyte stimulating hormone but not with neuropeptide Y in the rat brain. Neurosci Lett 331:119–122PubMedCrossRefGoogle Scholar
  105. Taranger GL, Carrillo M, Schulz RW, Fontaine P, Zanuy S, Felip A, Weltzien FA, Dufour S, Karlsen O, Norberg B, Andersson E, Hansen T (2010) Control of puberty in farmed fish. Gen Comp Endocrinol 165:483–515PubMedCrossRefGoogle Scholar
  106. Tostivint H, Trabucchi M, Vallarino M, Conlon JM, Lihrmann I, Vaudry H (2004) Molecular evolution of somatostatin genes. In: Patel YC (ed) Somatostatin endocrine updates. Kluwer Academic, DordrechtGoogle Scholar
  107. Trabucchi M, Tostivint H, Lihrmann I, Sollars C, Vallarino M, Dores RM, Vaudry H (2002) Polygenic expression of somatostatin in the sturgeon Acipenser transmontanus: molecular cloning and distribution of the mRNAs encoding two somatostatin precursors. J Comp Neurol 443:332–345PubMedCrossRefGoogle Scholar
  108. Vázquez M, Rodríguez F, Domezain A, Salas C (2002) Development of the brain of the sturgeon Acipenser nacarii. J Appl Ichthyol 18:275–279CrossRefGoogle Scholar
  109. Vigh-Teichmann I, Vigh B, Korf HW, Oksche A (1983) CSF-contacting and other somatostatin-immunoreactive neurons in the brains of Anguilla anguilla, Phoxinus phoxinus and Salmo gairdneri (Teleostei). Cell Tissue Res 233:319–334Google Scholar
  110. Volkoff H, Canosa LF, Unniappan S, Cerdá-Reverter JM, Bernier NJ, Kelly SP, Peter RE (2005) Neuropeptides and the control of food intake in fish. Gen Comp Endocrinol 142:3–19PubMedCrossRefGoogle Scholar
  111. Weltzien FA, Andersson E, Andersen O, Shalchian-Tabrizi K, Norberg B (2004) The brain–pituitary–gonad axis in male teleosts, with special emphasis on flatfish (Pleuronectiformes). Comp Biochem Physiol A Mol Integr Physiol 137:447–477PubMedCrossRefGoogle Scholar
  112. Yáñez J, Rodríguez M, Pérez S, Adrio F, Rodríguez-Moldes I, Manso MJ, Anadón R (1997) The neuronal system of the saccus vasculosus of trout (Salmo trutta fario and Oncorhynchus mykiss): an immunocytochemical and nerve tracing study. Cell Tissue Res 288:497–507PubMedCrossRefGoogle Scholar
  113. Yue H, Ye H, Chen X, Cao H, Li C (2013) Molecular cloning of cDNA of gonadotropin-releasing hormones in the Chinese sturgeon (Acipenser sinensis) and the effect of 17β-estradiol on gene expression. Comp Biochem Physiol A Mol Integr Physiol 166:529–537PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Institute in Health, Environment and OccupationUniversité de Rennes 1Rennes cedexFrance
  2. 2.Área de Bioloxía Celular, Departamento de Bioloxía FuncionalUniversidade de Santiago de CompostelaA CoruñaSpain

Personalised recommendations