Skip to main content

Chemical Neuroanatomy of the Hypothalamo-Hypophyseal System in Sturgeons

  • Chapter
  • First Online:
The Siberian Sturgeon (Acipenser baerii, Brandt, 1869) Volume 1 - Biology

Abstract

The preoptic-hypothalamo-hypophyseal system of sturgeons, located at the base of the brain, has a neurosecretory role exerted by hypophysiotropic neurons most of them located in the preoptic and hypothalamic periventricular region. The majority of those cells are of the cerebrospinal fluid-contacting type and exhibit short processes reaching the ventricular lumen. Moreover, the processes of those hypophysiotropic neurons course along the hypothalamic floor toward the hypophysis forming a preoptic-hypothalamo-hypophyseal tract. This chapter summarizes available data on the distribution of several hypophysiotropic factors, such as galanin, neurophysin, somatostatin, or gonadotropin-releasing hormone, in the preoptic-hypothalamo-hypophyseal system of sturgeons obtained by the use of immunohistochemical techniques. Immunoreactive neurons to those substances were found in the preoptic and hypothalamic nuclei, and immunoreactive fibers were observed along the preoptic-hypothalamo-hypophyseal tract and in the hypophysis, indicating their hypophysiotrophic role in the brain of sturgeons. Thus, most of the neuropeptides and neurohormones found in tetrapods are also present in sturgeons, suggesting that their common ancestors already possessed such regulatory systems. Unfortunately, because of the difficulty in approaching the physiology of sturgeons (size, cost, etc.), the number of experimental studies aiming at deciphering the roles of such neuropeptides and neurohormones is very limited, although we can speculate that part of the functions supported by these neurohormones would be similar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adrio F, Anadón R, Rodríguez-Moldes I (1999) Distribution of serotonin (5HT)-immunoreactive structures in the central nervous system of two chondrostean species (Acipenser baeri and Huso huso). J Comp Neurol 407:333–348

    Article  CAS  PubMed  Google Scholar 

  • Adrio F, Anadón R, Rodríguez-Moldes I (2002) Distribution of tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) immunoreactivity in the central nervous system of two chondrostean fishes (Acipenser baeri and Huso huso). J Comp Neurol 448:280–297

    Article  CAS  PubMed  Google Scholar 

  • Adrio F, Anadón R, Rodríguez-Moldes I (2008) Distribution of somatostatin immunoreactive neurons and fibres in the central nervous system of a chondrostean, the Siberian sturgeon (Acipenser baeri). Brain Res 1209:92–104

    Article  CAS  PubMed  Google Scholar 

  • Adrio F, Rodríguez MA, Rodríguez-Moldes I (2005) Distribution of galanin-like immunoreactivity in the brain of the Siberian sturgeon (Acipenser baeri). J Comp Neurol 487:54–74

    Article  PubMed  Google Scholar 

  • Amano M, Amiya N, Hiramatsu M, Tomioka T, Oka Y (2009) Interaction between neuropeptide Y immunoreactive neurons and galanin immunoreactive neurons in the brain of the masu salmon, Oncorhynchus masou. Neurosci Lett 462:33–38

    Article  CAS  PubMed  Google Scholar 

  • Amano M, Oka Y, Aida K, Okumoto N, Kawashima S, Hasegawa Y (1991) Immunocytochemical demonstration of salmon GnRH and chicken GnRH-II in the brain of the Masu salmon. J Comp Neurol 314:587–597

    Article  CAS  PubMed  Google Scholar 

  • Amemiya Y, Sogabe Y, Nozaki M, Takahashi A, Kawauchi H (1999) Somatolactin in the white sturgeon and African lungfish and its evolutionary significance. Gen Comp Endocrinol 114:181–190

    Article  CAS  PubMed  Google Scholar 

  • Amiya N, Amano M, Tabuchi A, Oka Y (2011) Anatomical relations between neuropeptide Y, galanin, and gonadotropin-releasing hormone in the brain of chondrostean, the Siberian sturgeon Acipenser baeri. Neurosci Lett 503:87–92

    Article  CAS  PubMed  Google Scholar 

  • Anglade I, Wang Y, Jensen J, Tramu G, Kah O, Conlon JM (1994) Characterization of trout galanin and its distribution in trout brain and pituitary. J Comp Neurol 350:63–74

    Article  CAS  PubMed  Google Scholar 

  • Arai R, Onteniente B, Trembleau A, Landry M, Calas A (1990) Hypothalamic galanin-immunoreactive neurons projecting to the posterior lobe of the rat pituitary: a combined retrograde tracing and immunohistochemical study. J Comp Neurol 299:405–420

    Article  CAS  PubMed  Google Scholar 

  • Arochena M, Anadón R, Díaz-Regueira SM (2004) Development of vimentin and glial fibrillary acidic protein immunoreactivities in the brain of gray mullet (Chelon labrosus), an advanced teleost. J Comp Neurol 469:413–436

    Article  CAS  PubMed  Google Scholar 

  • Baker BI, Bird DJ (2002) Neuronal organization of the melanin-concentrating hormone system in primitive actinopterygians: evolutionary changes leading to teleosts. J Comp Neurol 442:99–114

    Article  CAS  PubMed  Google Scholar 

  • Belenky MA, Kuzik VV, Chernigovskaya EV, Polenov AL (1985) The hypothalamo-hypophysial system in Acipenseriade. X. Corticoliberin-like immunoreacticity in the hypothalamus and hypophysis of Acipenser ruthenus L. Gen Comp Endocrinol 60:20–26

    Google Scholar 

  • Bohlen P, Brazeau P, Benoit R, Ling N, Esch F, Guillemin R (1980) Isolation and amino acid composition of two somatostatin-like peptides from ovine hypothalamus: somatostatin-28 and somatostatin-25. Biochem Biophys Res Commun 96:725–734

    Article  CAS  PubMed  Google Scholar 

  • Braford MR Jr, Northcutt RG (1983) Organization of the diencephalon and pretectum of the ray-finned fishes. In: Davis RE, Northcutt RG (eds) Neurobiology. Higher brain areas and functions, vol 2. University of Michigan Press, Ann Arbor, pp 117–164

    Google Scholar 

  • Chang JP, Johnson JD, Sawisky GR, Grey CL, Mitchell G, Booth M, Volk MM, Parks SK, Thompson E, Goss GG, Klausen C, Habibi HR (2009) Signal transduction in multifactorial neuroendocrine control of gonadotropin secretion and synthesis in teleosts-studies on the goldfish model. Gen Comp Endocrinol 161:42–52

    Article  CAS  PubMed  Google Scholar 

  • Chiba A, Honma Y (1994) Neuropeptide Y-immunoreactive structures in the telencephalon and diencephalon of the white sturgeon, Acipenser transmontanus, with special regard to the hypothalamo-hypophyseal system. Arch Histol Cytol 57:77–86

    Article  CAS  PubMed  Google Scholar 

  • Ch'ng JL, Christofides ND, Anand P, Gibson SJ, Allen YS, Su HC, Tatemoto K, Morrison JF, Polak JM, Bloom SR (1985) Distribution of galanin immunoreactivity in the central nervous system and the responses of galanin-containing neuronal pathways to injury. Neuroscience 16:343–354

    Article  PubMed  Google Scholar 

  • Cornbrooks EB, Parsons RL (1991a) Sexually dimorphic distribution of a galanin-like peptide in the central nervous system of the teleost fish Poecilia latipinna. J Comp Neurol 304:639–657

    Article  CAS  PubMed  Google Scholar 

  • Cornbrooks EB, Parsons RL (1991b) Source of sexually dimorphic galanin-like immunoreactive projections in the teleost fish Poecilia latipinna. J Comp Neurol 304:658–665

    Article  CAS  PubMed  Google Scholar 

  • Coveñas R, Mangas A, Medina LE, Sánchez ML, Aguilar LA, Díaz-Cabiale Z, Narváez JA (2011) Mapping of somatostatin-28 (1-12) in the alpaca diencephalon. J Chem Neuroanat 42:89–98

    Article  PubMed  CAS  Google Scholar 

  • Eigler T, Ben-Shlomo A (2014) Somatostatin system: molecular mechanisms regulating anterior pituitary hormones. J Mol Endocrinol 53:R1–R19

    Article  CAS  PubMed  Google Scholar 

  • Fuxe K, Ogren SO, Jansson A, Cintra A, Harfstrand A, Agnati LF (1988) Intraventricular injections of galanin reduces 5-HT metabolism in the ventral limbic cortex, the hippocampal formation and the frontoparietal cortex of the male rat. Acta Physiol Scand 133:579–581

    Article  CAS  PubMed  Google Scholar 

  • Gai WP, Geffen LB, Blessing WW (1990) Galanin immunoreactive neurons in the human hypothalamus: colocalization with vasopressin-containing neurons. J Comp Neurol 298:265–280

    Article  CAS  PubMed  Google Scholar 

  • Gharaei A, Mahboudi F, Esmaili-Sari A, Edalat R, Adeli A, Keyvanshokooh S (2010) Molecular cloning of cDNA of mammalian and chicken II gonadotropin-releasing hormones (mGnRH and cGnRH-II) in the beluga (Huso huso) and the disruptive effect of methylmercury on gene expression. Fish Physiol Biochem 36:803–817

    Article  CAS  PubMed  Google Scholar 

  • Gómez A, Durán E, Ocaña FM, Jiménez-Moya F, Broglio C, Domezain A, Salas C, Rodríguez F (2009) Observations on the brain development of the sturgeon Acipenser naccarii. In: Carmona R, Domezain A, García-Gallego M, Hernando JA, Rodríguez F, Ruiz-Rejón M (eds) Biology, conservation and sustainable development of sturgeons, Fish & fisheries series, vol 29. Springer, Netherlands, pp 155–174

    Chapter  Google Scholar 

  • González GC, Belenky MA, Polenov AL, Lederis K (1992) Comparative localization of corticotropin and corticotropin releasing factor-like peptides in the brain and hypophysis of a primitive vertebrate, the sturgeon Acipenser ruthenus L. J Neurocytol 21:885–896

    Article  PubMed  Google Scholar 

  • González A, Moreno N, Morona R, López JM (2003) Somatostatin-like immunoreactivity in the brain of the urodele amphibian Pleurodeles waltl. Colocalization with catecholamines and nitric oxide. Brain Res 965:246–258

    Article  PubMed  Google Scholar 

  • Grandi G, Chicca M (2004) Early development of the pituitary gland in Acipenser nacarii (Chondrostei, Acipenseriformes): an immunocytochemical study. Anat Embryol 208:311–321

    Article  CAS  PubMed  Google Scholar 

  • Grau EG, Nishioka RS, Young G, Bern HA (1985) Somatostatin-like immunoreactivity in the pituitary and brain of three teleosts fish species: somatostatin as a potential regulator of prolactin cell function. Gen Comp Endocrinol 59:350–357

    Article  CAS  PubMed  Google Scholar 

  • Hansen GH (1971) On the structure and vascularization of the pituitary gland in some primitive actinopterygians (Acipenser, Polyodon, Calamoichthys, Polypterus, Lepisosteus and Amia). Biol Skr 18:1–64

    Google Scholar 

  • Hansen GH, Hansen BL (1975) Inmmunohistochemical localization of growth hormone and prolactin in the pituitary gland of Acipenser güldenstaedti Brandt (Chondrostei). Acta Zool 56:29–41

    Article  CAS  Google Scholar 

  • Herrick CJ (1910) The morphology of the forebrain in amphibia and reptilia. J Comp Neurol 20:413–547

    Google Scholar 

  • Herrick CJ (1933) Morphogenesis of the brain. J Morphol 54:233–258

    Article  Google Scholar 

  • Hildahl J, Sandvik GK, Edvardsen RB, Fagernes C, Norberg B, Haug TM, Weltzien FA (2011) Identification and gene expression analysis of three GnRH genes in female Atlantic cod during puberty provides insight into GnRH variant gene loss in fish. Gen Comp Endocrinol 172:458–467

    Article  CAS  PubMed  Google Scholar 

  • Holmqvist BI, Ekström P (1995) Hypophysiotropic systems in the brain of the Atlantic salmon. Neuronal innervation of the pituitary and the origin of pituitary dopamine and nonapeptides identified by means of combined carbocyanine tract tracing and immunocytochemistry. J Chem Neuroanat 8:125–145

    Article  CAS  PubMed  Google Scholar 

  • Horvath TL, Naftolin F, Leranth C, Sahu A, Kalra SP (1996) Morphological and pharmacological evidence for neuropeptide Y-galanin interaction in the rat hypothalamus. Endocrinology 137:3069–3078

    Article  CAS  PubMed  Google Scholar 

  • Ibata Y, Fukui K, Obata HL, Tanaka M, Hisa Y, Sano Y, Ishigami T, Imagawa K, Sin S (1982) Postnatal ontogeny of catecholamine and somatostatin neuron systems in the median eminence of the rat as revealed by a colocalization technique. Brain Res Bull 9:407–415

    Article  CAS  PubMed  Google Scholar 

  • Jansson A, Fuxe K, Eneroth P, Agnati L (1989) Centrally administered galanin reduces dopamine utilization in the median eminence and increases dopamine utilization in the medial neostriatum of the male rat. Acta Physiol Scand 135:199–200

    Article  CAS  PubMed  Google Scholar 

  • Johnston JB (1901) The brain of Acipenser. A contribution to the morphology of the vertebrate brain. Zool Jahrb Abt Anat Ontog 15:59–260

    Google Scholar 

  • Joss JMP, Dores RM, Crim JW, Beshaw M (1990) Immunocytochemical location of pituitary cells containing ACTH, α-MSH, and β-endorphin in Acipenser transmontanus, Lepisosteus spatula, and Amia calva. Gen Comp Endocrinol 78:459–468

    Article  CAS  PubMed  Google Scholar 

  • Kageyama H, Takenoya F, Hori Y, Yoshida T, Shioda S (2008) Morphological interaction between galanin-like peptide- and dopamine-containing neurons in the rat arcuate nucleus. Regul Pept 145:165–168

    Article  CAS  PubMed  Google Scholar 

  • Kah O, Breton B, Dulka JG, Nunez-Rodriguez J, Peter RE, Corigan A, Rivier JJ, Vale WW (1986) A reinvestigation of the Gn-RH (gonadotropin-releasing hormone) systems in the goldfish brain using antibodies to salmon Gn-RH. Cell Tissue Res 244:327–337

    CAS  PubMed  Google Scholar 

  • Kah O, Zanuy S, Mañanós E, Anglade I, Carrillo M (1991) Distribution of salmon gonadotrophin releasing-hormone in the brain and pituitary of the sea bass (Dicentrarchus labrax). An immunocytochemical and immunoenzymoassay study. Cell Tissue Res 266:129–136

    Article  CAS  Google Scholar 

  • Kim JB, Gadsboll V, Whittaker J, Barton BA, Conlon JM (2000) Gastroenteropancreatic hormones (insulin, glucagon, somatostatin, and multiple forms of PYY) from the pallid sturgeon, Scaphirhynchus albus (Acipenseriformes). Gen Comp Endocrinol 120:353–363

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Hayton WL, Schultz IR (2006) Modeling the brain–pituitary–gonad axis in salmon. Mar Environ Res 62(Suppl):S426–S432

    Article  CAS  PubMed  Google Scholar 

  • Kotrschal K, Krautgartner WD, Adam H (1983) Crown cells in the diencephalon of Acipenser ruthenus (Acipenseridae, Chondrostei). J Hirnforsch 24:655–657

    CAS  PubMed  Google Scholar 

  • Kotrschal K, Krautgartner WD, Adam H (1985) Distribution of aminergic neurons in the brain of the sterlet, Acipenser ruthenus (Chondrostei, Actinopterygii). J Hirnforsch 26:65–72

    CAS  PubMed  Google Scholar 

  • Langhorne P (1986) Somatostatin stimulates ACTH release in brown trout (Salmo trutta L.) Gen Comp Endocrinol 61:71–75

    Article  CAS  PubMed  Google Scholar 

  • Leprêtre E, Anglade I, Williot P, Vandesande F, Tramu G, Kah O (1993) Comparative distribution of mammalian GnRH (gonadotrophin-releasing hormone) and chicken GnRH-II in the brain of the immature Siberian sturgeon (Acipenser baeri). J Comp Neurol 337:568–583

    Article  PubMed  Google Scholar 

  • Lescheid DW, Powell JF, Fischer WH, Park M, Craig A, Bukovskaya O, Barannikova IA, Sherwood NM (1995) Mammalian gonadotropin-releasing hormone (GnRH) identified by primary structure in Russian sturgeon, Acipenser gueldenstaedti. Regul Pept 55:299–309

    Article  CAS  PubMed  Google Scholar 

  • Li CJ, Wei QW, Zhou L, Cao H, Zhang Y, Gui JF (2009) Molecular and expression characterization of two somatostatin genes in the Chinese sturgeon, Acipenser sinensis. Comp Biochem Physiol A Mol Integr Physiol 154:127–134

    Article  PubMed  CAS  Google Scholar 

  • Lin XW, Lin HR, Meter RE (1993) Growth hormone and gonadotropin secretion in the common carp (Cyprinus carpio L.): in vitro interactions of gonadotropin-releasing hormone, somatostatin, and the dopamine agonist apomorphine. Gen Comp Endocrinol 89:62–71

    Article  CAS  PubMed  Google Scholar 

  • López FJ, Merchenthaler I, Ching M, Wisniewski MG, Negro-Vilar A (1991) Galanin: a hypothalamic-hypophysiotropic hormone modulating reproductive functions. Proc Natl Acad Sci U S A 88:4508–4512

    Article  PubMed  PubMed Central  Google Scholar 

  • Maiter DM, Hooi SC, Koenig JI, Martin JB (1990) Galanin is a physiological regulator of spontaneous pulsatile secretion of growth hormone in the male rat. Endocrinology 126:1216–1222

    Article  CAS  PubMed  Google Scholar 

  • Marchant TA, Dulka JG, Peter RE (1989) Relationship between serum growth hormone levels and the brain and pituitary content of immunoreactive somatostatin in the goldfish, Carassius auratus L. Gen Comp Endocrinol 73:458–468

    Article  CAS  PubMed  Google Scholar 

  • Mathieu M, Bruzzone F, Chartrel N, Serra GP, Spiga S, Vallarino M, Vaudry H (2004) Somatostatin in the brain of the cave salamander, Hydromantes genei (Amphibia, Plethodontidae): immunohistochemical localization and biochemical characterization. J Comp Neurol 475:163–176

    Article  CAS  PubMed  Google Scholar 

  • Mechenthaler I (2008) Galanin and the neuroendocrine axes. Cell Mol Life Sci 65:1826–1835

    Article  CAS  PubMed  Google Scholar 

  • Melander T, Hökfelt T, Rökaeus A (1986) Distribution of galaninlike immunoreactivity in the rat central nervous system. J Comp Neurol 248:475–517

    Article  CAS  PubMed  Google Scholar 

  • Mensah ET, Volkoff H, Unniappan S (2010) Galanin systems in non-mammalian vertebrates with special focus on fishes. EXS 102:243–262

    CAS  PubMed  Google Scholar 

  • Menuet A, Anglade I, Le Guevel R, Pellegrini E, Pakdel F, Kah O (2003) Distribution of aromatase mRNA and protein in the brain and pituitary of female rainbow trout: comparison with estrogen receptor alpha. J Comp Neurol 462:180–193

    Article  CAS  PubMed  Google Scholar 

  • Merchenthaler I (2010) Galanin and the neuroendocrine axes. In: Hökfelt T (ed) Galanin. Springer, Basel, pp 71–86

    Chapter  Google Scholar 

  • Merchenthaler I, Rotoli G, Grignol G, Dudas B (2010) Intimate associations between the neuropeptide Y system and the galanin-immunoreactive neurons in the human diencephalon. Neuroscience 170:839–845

    Article  CAS  PubMed  Google Scholar 

  • Merchenthaler I, Rotoli G, Peroski M, Grignol G, Dudas B (2013) Catecholaminergic system innervates galanin-immunoreactive neurons in the human diencephalon. Neuroscience 238:327–334

    Article  CAS  PubMed  Google Scholar 

  • Moons L, Batten TF, Vandesande F (1991) Autoradiographic distribution of galanin binding sites in the brain and pituitary of the sea bass (Dicentrarchus labrax). Neurosci Lett 123:49–52

    Article  CAS  PubMed  Google Scholar 

  • Murakami Y, Kato Y, Koshiyama H, Inoue T, Yanaihara N, Imura H (1987) Galanin stimulates growth hormone (GH) secretion via GH-releasing factor (GRF) in conscious rats. Eur J Pharmacol 136:415–418

    Article  CAS  PubMed  Google Scholar 

  • Nakane Y, Ikegami K, Iigo M, Ono H, Takeda K, Takahashi D, Uesaka M, Kimijima M, Hashimoto R, Arai N, Suga T, Kosuge K, Abe T, Maeda R, Senga T, Amiya N, Azuma T, Amano M, Abe H, Yamamoto N, Yoshimura T (2013) The saccus vasculosus of fish is a sensor of seasonal changes in day length. Nat Commun 4:2108

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuys R (1998) Chondrostean fishes. In: Nieuwenhuys R, Ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates, vol 1. Springer, Berlin, pp 701–757

    Chapter  Google Scholar 

  • Nishii M, Movérus B, Bukovskaya OS, Takahashi A, Kawauchi H (1995) Isolation and characterization of (Pro2)somatostatin-14 and melanotropins from Russian sturgeon, Acipenser gueldenstaedti Brandt. Gen Comp Endocrinol 99:6–12

    Article  CAS  PubMed  Google Scholar 

  • Northcutt RG (1995) The forebrain of gnathostomes: in search of a morphotype. Brain Behav Evol 46:275–318

    Article  CAS  PubMed  Google Scholar 

  • Oka Y, Ichikawa M (1990) Gonadotropin-releasing hormone (GnRH) immunoreactive system in the brain of the dwarf gourami (Colisa lalia) as revealed by light microscopic immunocytochemistry using a monoclonal antibody to common amino acid sequence of GnRH. J Comp Neurol 300:511–522

    Google Scholar 

  • Olivereau M, Olivereau JM (1991a) Immunocytochemical localization of a galanin-like peptidergic system in the brain and pituitary of some teleost fish. Histochemistry 96:343–354

    Article  CAS  PubMed  Google Scholar 

  • Olivereau M, Olivereau JM (1991b) Galanin-like immunoreactivity is increased in the brain of estradiol- and methyltestosterone-treated eels. Histochemistry 96:487–497

    Article  CAS  PubMed  Google Scholar 

  • Park JJ, Baum MJ, Tobet SA (1997) Sex difference and steroidal stimulation of galanin immunoreactivity in the ferret’s dorsal preoptic area/anterior hypothalamus. J Comp Neurol 389:277–288

    Article  CAS  PubMed  Google Scholar 

  • Patzelt C, Tager HS, Carroll RJ, Steiner DE (1980) Identification of prosomatostatin in pancreatic islets. Proc Natl Acad Sci U S A 77:2410–2414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelissero C, Núñez-Rodríguez J, Le Menn F, Kah O (1988) Immunohistochemical investigation of the pituitary of the sturgeon (Acipenser baeri, Chondrostei). Fish Phisiol Biochem 5:109–119

    Article  CAS  Google Scholar 

  • Piñuela C, Northcutt RG (2007) Immunohistochemical organization of the forebrain in the white sturgeon, Acipenser transmontanus. Brain Behav Evol 69:229–253

    Article  PubMed  Google Scholar 

  • Polenov AL, Belenky MA, Garlov PE, Konstantinova MS (1976) The hypothalamo-hypophysial system in Acipenseriade. VI. The proximal neurosecretory contact region. Cell Tissue Res 170:129–144

    Article  CAS  PubMed  Google Scholar 

  • Polenov AL, Efimova NA, Konstantinova MS, Senchik YI, Yakovleva IV (1983) The hypothalamo-hypophysial system in Acipenseriade. IX. Formation of monoaminergic neurosecretory cells in the preoptic nucleus region during early ontogeny. Cell Tissue Res 232:651–667

    Google Scholar 

  • Polenov AL, Garlov PE (1971) The hypothalamo-hypophysial system in Acipenseriade. I. Ultrastructural organization of large neurosecretory terminals (herring bodies) and axoventricular contacts. Z Zellforsch 116:349–374

    Google Scholar 

  • Polenov AL, Garlov PE (1973) The hypothalamo-hypophysial system in Acipenseriade. III. The neurohypophysis of Acipenser güldenstädti Brandt and Acipenser stellatus Pallas. Z Zellforsch 136:461–477

    Google Scholar 

  • Polenov AL, Garlov PE, Konstantinova MS, Belenky MA (1972) The hypothalamo-hypophysial system in Acipenseriade. II. Adrenergic structures of the hypophysial neurointermediate complex. Z Zellforsch 128:470–481

    Google Scholar 

  • Polenov AL, Kuzik VV, Danilova OA (1997) The hypothalamo-hypophysial system in Acipenseriade. XI. Morphological and immunohistochemical analysis of nonapeptidergic and cortociliberin-immunoreactive elements in hypophysectomized starlet (Acipenser ruthenus L.) Gen Comp Endocrinol 105:314–322

    Google Scholar 

  • Polenov AL, Pavlovic M (1978) The hypothalamo-hypophysial system in Acipenseriade. VII. The functional morphology of the peptidergic neurosecretory cells in the preoptic nucleus of the sturgeon, Acipenser güldenstädti Brandt. A quantitative study. Cell Tissue Res 186:559–570

    Google Scholar 

  • Power DM, Canario AV, Ingleton PM (1996) Somatotropin release-inhibiting factor and galanin innervation in the hypothalamus and pituitary of seabream (Sparus aurata). Gen Comp Endocrinol 101:264–274

    Article  CAS  PubMed  Google Scholar 

  • Puelles L, Rubenstein JLR (1993) Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. TINS 16:472–479

    CAS  PubMed  Google Scholar 

  • Rao PD, Murthy CK, Cook H, Peter RE (1996) Sexual dimorphism of galanin-like immunoreactivity in the brain and pituitary of goldfish, Carassius auratus. J Chem Neuroanat 10:119–135

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez MA, Anadón R, Rodríguez-Moldes I (2003) Development of galanin-like immunoreactivity in the brain of the brown trout (Salmo trutta fario), with some observations on sexual dimorphism. J Comp Neurol 465:263–285

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez Díaz MA, Candal E, Santos-Durán GN, Adrio F, Rodríguez-Moldes I (2011) Comparative analysis of met-enkephalin, galanin and GABA immunoreactivity in the developing trout preoptic-hypophyseal system. Gen Comp Endocrinol 173:148–158

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Moldes I, Candal E, Huesa G, Adrio F, Anadón R (1997) Distribución de neuronas inmunorreactivas a la Met-encefalina en el SNC del esturión. Rev Neurol 25:1800

    Google Scholar 

  • Rugarn O, Theodorsson A, Hammar M, Theodorsson E (1999) Effects of estradiol, progesterone, and norethisterone on regional concentrations of galanin in the rat brain. Peptides 20:743–748

    Article  CAS  PubMed  Google Scholar 

  • Rupp B, Northcutt RG (1998) The diencephalon and pretectum of the white sturgeon (Acipenser transmontanus): a cytoarchitectonic study. Brain Behav Evol 51:239–262

    Article  CAS  PubMed  Google Scholar 

  • Rustamov EK (2006a) Organization of diencephalon of the sturgeons. Preoptic area. J Evol Biochem Physiol 42:195–207

    Article  Google Scholar 

  • Rustamov EK (2006b) Organization of hypothalamic area of diencephalon in sturgeons. J Evol Biochem Physiol 42:342–353

    Article  Google Scholar 

  • Sakanaka M, Magari S, Inoue N (1990) Somatostatin co-localizes with tyrosine hydroxylase in the nerve cells of discrete hypothalamic regions in rats. Brain Res 516:313–317

    Article  CAS  PubMed  Google Scholar 

  • Sathyanesan AG, Chavin W (1967) Hypothalamo-hypophyseal neurosecretory system in the primitive actinopterygian fishes (Holostei and Chondrostei). Acta Anat (Basel) 68:284–299

    Article  CAS  Google Scholar 

  • Scheffen JR, Splett CL, Desotelle JA, Bauer-Dantoin AC (2003) Testosterone-dependent effects of galanin on pituitary luteinizing hormone secretion in male rats. Biol Reprod 68:363–369

    Article  CAS  PubMed  Google Scholar 

  • Schindler M, Humphrey PP, Emson PC (1996) Somatostatin receptors in the central nervous system. Prog Neurobiol 50:9–47

    Article  CAS  PubMed  Google Scholar 

  • Shen ES, Hardenburg JL, Meade EH, Arey BJ, Merchenthaler I, López FJ (1999) Estradiol induces galanin gene expression in the pituitary of the mouse in an estrogen receptor alpha-dependent manner. Endocrinology 140:2628–2631

    Article  CAS  PubMed  Google Scholar 

  • Sherwood NM, Doroshov S, Lance V (1991) Gonadotropin-releasing hormone (GnRH) in bony fish that are phylogenetically ancient: reedfish (Calamoichthys calabaricus), sturgeon (Acipenser transmontanus), and alligator gar (Lepisosteus spatula). Gen Comp Endocrinol 84:44–57

    Article  CAS  PubMed  Google Scholar 

  • Smeets WJAJ, Nieuwenhuys R, Roberts BL (1983) The central nervous system of cartilaginous fishes. Structure and functional correlations. Springer Verlag, New York

    Book  Google Scholar 

  • Splett CL, Scheffen JR, Desotelle JA, Plamann V, Bauer-Dantoin AC (2003) Galanin enhancement of gonadotropin-releasing hormone-stimulated luteinizing hormone secretion in female rats is estrogen dependent. Endocrinology 144:484–490

    Article  CAS  PubMed  Google Scholar 

  • Sueiro C, Carrera I, Ferreiro S, Molist P, Adrio F, Anadón R, Rodríguez-Moldes I (2007) New insights on Saccus vasculosus evolution: a developmental and immunohistochemical study in elasmobranchs. Brain Behav Evol 70:187–204

    Article  PubMed  Google Scholar 

  • Takenoya F, Funahashi H, Matsumoto H, Ohtaki T, Katoh S, Kageyama H, Suzuki R, Takeuchi M, Shioda S (2002) Galanin-like peptide is co-localized with alpha-melanocyte stimulating hormone but not with neuropeptide Y in the rat brain. Neurosci Lett 331:119–122

    Article  CAS  PubMed  Google Scholar 

  • Taranger GL, Carrillo M, Schulz RW, Fontaine P, Zanuy S, Felip A, Weltzien FA, Dufour S, Karlsen O, Norberg B, Andersson E, Hansen T (2010) Control of puberty in farmed fish. Gen Comp Endocrinol 165:483–515

    Article  CAS  PubMed  Google Scholar 

  • Tostivint H, Trabucchi M, Vallarino M, Conlon JM, Lihrmann I, Vaudry H (2004) Molecular evolution of somatostatin genes. In: Patel YC (ed) Somatostatin endocrine updates. Kluwer Academic, Dordrecht

    Google Scholar 

  • Trabucchi M, Tostivint H, Lihrmann I, Sollars C, Vallarino M, Dores RM, Vaudry H (2002) Polygenic expression of somatostatin in the sturgeon Acipenser transmontanus: molecular cloning and distribution of the mRNAs encoding two somatostatin precursors. J Comp Neurol 443:332–345

    Article  CAS  PubMed  Google Scholar 

  • Vázquez M, Rodríguez F, Domezain A, Salas C (2002) Development of the brain of the sturgeon Acipenser nacarii. J Appl Ichthyol 18:275–279

    Article  Google Scholar 

  • Vigh-Teichmann I, Vigh B, Korf HW, Oksche A (1983) CSF-contacting and other somatostatin-immunoreactive neurons in the brains of Anguilla anguilla, Phoxinus phoxinus and Salmo gairdneri (Teleostei). Cell Tissue Res 233:319–334

    Google Scholar 

  • Volkoff H, Canosa LF, Unniappan S, Cerdá-Reverter JM, Bernier NJ, Kelly SP, Peter RE (2005) Neuropeptides and the control of food intake in fish. Gen Comp Endocrinol 142:3–19

    Article  CAS  PubMed  Google Scholar 

  • Weltzien FA, Andersson E, Andersen O, Shalchian-Tabrizi K, Norberg B (2004) The brain–pituitary–gonad axis in male teleosts, with special emphasis on flatfish (Pleuronectiformes). Comp Biochem Physiol A Mol Integr Physiol 137:447–477

    Article  PubMed  CAS  Google Scholar 

  • Yáñez J, Rodríguez M, Pérez S, Adrio F, Rodríguez-Moldes I, Manso MJ, Anadón R (1997) The neuronal system of the saccus vasculosus of trout (Salmo trutta fario and Oncorhynchus mykiss): an immunocytochemical and nerve tracing study. Cell Tissue Res 288:497–507

    Article  PubMed  Google Scholar 

  • Yue H, Ye H, Chen X, Cao H, Li C (2013) Molecular cloning of cDNA of gonadotropin-releasing hormones in the Chinese sturgeon (Acipenser sinensis) and the effect of 17β-estradiol on gene expression. Comp Biochem Physiol A Mol Integr Physiol 166:529–537

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fátima Adrio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Kah, O., Adrio, F. (2018). Chemical Neuroanatomy of the Hypothalamo-Hypophyseal System in Sturgeons. In: Williot, P., Nonnotte, G., Vizziano-Cantonnet, D., Chebanov, M. (eds) The Siberian Sturgeon (Acipenser baerii, Brandt, 1869) Volume 1 - Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-61664-3_13

Download citation

Publish with us

Policies and ethics