Nutritional Requirements of the Siberian Sturgeon: An Updated Synthesis

  • Bahram Falahatkar


Sturgeon aquaculture grows fast with 465% increasing through 2003–2013. Unfortunately, there is no special culture system or nutritional requirements for these valuable species. Among 27 different sturgeon species, Siberian sturgeon Acipenser baerii is one of the best sturgeon fish for culture in different environments with high growth rate and adaptation to captivity. With growing Siberian sturgeon aquaculture, nutritional requirements at any life stage and culture condition should be considered. This chapter provides basic information and recent data on nutrient requirements of Siberian sturgeon to illuminate the way for sturgeon aquaculturists, feed factories, and researchers to improve and provide appropriate specialized feeds for the fish. Hence, this chapter is focused on macro- and micronutrients, feeding practices, and starvation effect of Siberian sturgeon.


Siberian sturgeon Feeding Requirement Macro- and micronutrients Aquaculture 


  1. Adámek A, Prokeš M, Baruš V, Sukop I (2007) Diet and growth of 1+ Siberian sturgeon, Acipenser baerii in alternative pond culture. Turk J Fish Aquat Sci 7:153–160Google Scholar
  2. Agradi E, Abrami G, Serrini G, Mckenzie D, Bolis C, Bronzi P (1993) The role of dietary n-3 fatty acid and vitamin E supplements in growth of sturgeon (Acipenser naccarii). Comp Biochem Physiol 105A:187–195CrossRefGoogle Scholar
  3. Ashouri G, Yavari V, Bahmani MA, Yazdani M, Kazemi R, Morshedi V, Fatollahi M (2013) The effect of short-term starvation on some physiological and morphological parameters in juvenile Siberian sturgeon, Acipenser baerii (Actinopterygii: Acipenseriformes: Acipenseridae). Acta Ichthyol Pisc 43:145–150Google Scholar
  4. Babaei S, Abedian Kenari A, Hedayati M, Yazdani Sadati MA, Metón I (2016) Effect of diet composition on growth performance, hepatic metabolism and antioxidant activities in Siberian sturgeon (Acipenser baerii, Brandt, 1869) submitted to starvation and refeeding. Fish Physiol Biochem 42:1509–1520Google Scholar
  5. Bagherzadeh Lakani F (2016) Effects of cooper nanoparticle on physiological and pathological responses of Siberian sturgeon (Acipenser baerii). PhD Thesis, Urmia University, p 132 (in Persian)Google Scholar
  6. Birstein VJ (1993) Sturgeons and paddlefishes: threatened species in need of conservation. Cons Biol 7:773–787CrossRefGoogle Scholar
  7. Bronzi P, Rosenthal H (2014) Present and future sturgeon and caviar production and marketing: a global market overview. J Appl Ichthyol 30:1536–1546CrossRefGoogle Scholar
  8. Bronzi P, Rosenthal H, Gessner J (2011) Global sturgeon aquaculture production: an overview. J Appl Ichthyol 27:169–175CrossRefGoogle Scholar
  9. Burtle GJ, Lovell RT (1989) Lack of response of channel catfish (Ictalurus punctatus) to dietary myo-inositol. Can J Fish Aquat Sci 46:218–222CrossRefGoogle Scholar
  10. Cowey CB, Walton MJ (1989) Intermediary metabolism. In: Halver JE (ed) Fish nutrition. Academic Press, San Diego, CA, pp 260–329Google Scholar
  11. Cui Y, Hung SSO, Zhu X (1996) Effect of ration and body size on energy budget of juvenile white sturgeon. J Fish Biol 49:863–876CrossRefGoogle Scholar
  12. Czeczuga B, Kolman R, Czeczuga-Semeniuk E, Szczepkowski M, Semeniuk A, Kosielinski P, Sidorov N (2006) Carotenoid composition in the muscles of Siberian sturgeon (Acipenser baerii Br.) and Sterlet (Acipenser ruthenus L.) juveniles fed feed supplemented with vitaton. Arch Polish Fish 14:213–224Google Scholar
  13. Dabrowski K, Kaushik S, Fauconneau B (1985) Rearing of sturgeon (Acipenser baerii Brandt) larvae: I. Feeding trial. Aquaculture 47:185–192CrossRefGoogle Scholar
  14. Dabrowski K, Kaushik S, Fauconneau B (1987) Rearing of sturgeon (Acipenser baerii Brandt) larvae: III. Nitrogen and energy metabolism and amino acid absorption. Aquaculture 65:31–41CrossRefGoogle Scholar
  15. Delaedt Y, Diallo MD, Rurangwa E, Courtin CM, Delcour JA, Ollevier F (2008) Impact of arabinoxylooligosaccharides on microbial community composition and diversity in the gut of Siberian sturgeon (Acipenser baerii). Aquaculture Europe, Krakow, PolandGoogle Scholar
  16. Deng DF, Hung SSO, Conklin DE (1998) White sturgeon (Acipenser transmontanus) require both n-3 and n-6 fatty acids. Aquaculture 163:333–335CrossRefGoogle Scholar
  17. Eslamloo K, Falahatkar B, Yokoyama S (2012) Effects of dietary bovine lactoferrin on growth, physiological performance, iron metabolism and non-specific immune responses of Siberian sturgeon Acipenser baerii. Fish Shellfish Immunol 32:976–985PubMedCrossRefGoogle Scholar
  18. Falahatkar B (2012) The metabolic effects of feeding and fasting in beluga Huso huso. Mar Environ Res 82:69–75PubMedCrossRefGoogle Scholar
  19. Falahatkar B, Nasrollahzadeh A (2011) Caspian Sea and the sturgeon catch in Iran. Doc Nat 60:1–12. (In German)Google Scholar
  20. Falahatkar B, Soltani M, Abtahi B, Kalbassi M, Pourkazemi M (2006) Effects of dietary vitamin C supplementation on performance, tissue chemical composition and alkaline phosphatase activity in great sturgeon, Huso huso. J Appl Ichthyol 26:283–286CrossRefGoogle Scholar
  21. Falahatkar B, Soltani M, Abtahi B, Kalbassi M, Pourkazemi M (2015) The role of dietary L-ascorbyl-2-polyphosphate on the growth and physiological functions of beluga, Huso huso (Linnaeus, 1758). Aquac Res 46:3056–3069CrossRefGoogle Scholar
  22. Falahatkar B, Poursaeid S, Shakoorian M, Barton B (2009) Responses to handling and confinement stressors in juvenile great sturgeon Huso huso. J Fish Biol 75:784–796PubMedCrossRefGoogle Scholar
  23. Falahatkar B, Tolouei MH, Falahatkar S, Abbasalizadeh A (2011) Laparoscopy, a minimally-invasive technique for sex identification in cultured great sturgeon Huso huso. Aquaculture 321:273–279CrossRefGoogle Scholar
  24. Falahatkar B, Akhavan SR, Efatpanah I, Meknatkhah B (2013) Effect of feeding and starvation during the winter period on the growth performance of young-of-year (YOY) great sturgeon, Huso huso. J Appl Ichthyol 29:26–30CrossRefGoogle Scholar
  25. Falahatkar B, Akhavan SR, Poursaeid S, Hasirbaf I (2014a) Use of sex steroid profile and hematological indices to identify perinucleolus and migratory gonadal stages of captive Siberian sturgeon Acipenser baerii (Brandt, 1869) females. J Appl Ichthyol 30:1578–1584CrossRefGoogle Scholar
  26. Falahatkar B, Eslamloo K, Yokoyama S (2014b) Suppression of stress responses in Siberian sturgeon, Acipenser baerii, juveniles by the dietary administration of bovine lactoferrin. J World Aqua Soc 45:699–708CrossRefGoogle Scholar
  27. Falahatkar B, Poursaeid S (2014) Gender identification in great sturgeon (Huso huso) using morphology, sex steroids, histology and endoscopy. Anat Histol Embryol 43:81–89PubMedCrossRefGoogle Scholar
  28. Falahatkar B, Poursaeid S (2015) Effects of ovine growth hormone on growth performance and body composition in Siberian sturgeon Acipenser baerii. Middle East and Central Asia Aquaculture 2015, December 14–16, Tehran, IranGoogle Scholar
  29. FAO (2014) The state of world fisheries and aquaculture. Fisheries and Aquaculture Department, Rome, ItalyGoogle Scholar
  30. Fauconneau B, Aguirre P, Dabrowski K, Kaushik S (1986) Rearing of sturgeon (Acipenser baerii Brandt) larvae: 2. Protein metabolism: influence of fasting and diet quality. Aquaculture 51:117–131CrossRefGoogle Scholar
  31. Fontagné S, Bazin D, Bréque J, Vachot C, Bernarde C, Rouault T, Bergot P (2006) Effects of dietary oxidized lipid and vitamin a on the early development and antioxidant status of Siberian sturgeon (Acipenser baerii) larvae. Aquaculture 257:400–411CrossRefGoogle Scholar
  32. Furné M, Morales AE, Trenzado CE, García-Gallego M, Hidalgo MC, Domezain A, Rus AS (2012) The metabolic effects of prolonged starvation and refeeding in sturgeon and rainbow trout. J Comp Physiol 182B:63–76CrossRefGoogle Scholar
  33. Gao X, Ge L-Q, Li M-Y, Guo X-X, An R-Y (2009) Effects of Bacillus spp. on the growth performance and digestibility of juvenile Acipenser baerii. J Hebei Norm Univ 33:377–382Google Scholar
  34. Geraylou Z, Souffreau C, Rurangwa E, D'Hondt S, Callewaert L, Courtin CM, Delcour JA, Buyse J, Ollevier F (2012) Effects of arabinoxylan-oligosaccharides (AXOS) on juvenile Siberian sturgeon (Acipenser baerii) performance, immune responses and gastrointestinal microbial community. Fish Shellfish Immunol 33:718–724PubMedCrossRefGoogle Scholar
  35. Geraylou Z, Souffreau C, Rurangwa E, De Meester L, Courtin CM, Delcour JA, Buyse J, Ollevier F (2013a) Effects of dietary arabinoxylan-oligosaccharides (AXOS) and endogenous probiotics on the growth performance, non-specific immunity and gut microbiota of juvenile Siberian sturgeon (Acipenser baerii). Fish Shellfish Immunol 35:766–775PubMedCrossRefGoogle Scholar
  36. Geraylou Z, Souffreau C, Rurangwa E, Maes GE, Spanier KI, Courtin CM, Delcour JA, Buyse J, Ollevier F (2013b) Prebiotic effects of arabinoxylan oligosaccharides on juvenile Siberian sturgeon (Acipenser baerii) with emphasis on the modulation of the gut microbiota using 454 pyrosequencing. FEMS Microbiol Ecol 86:357–371PubMedCrossRefGoogle Scholar
  37. Gisbert E, Williot P (1997) Larval behaviour and effect of the timing of initial feeding on growth and survival of Siberian sturgeon (Acipenser baerii) larvae under small scale hatchery production. Aquaculture 156:63–76CrossRefGoogle Scholar
  38. Gisbert E, Williot P (2002) Influence of storage duration of ovulated eggs prior to fertilisation on the early ontogenesis of sterlet (Acipenser ruthenus) and Siberian sturgeon (Acipenser baerii). Internat Rev Hydrobiol 87:605–612CrossRefGoogle Scholar
  39. Ghiasi S, Falahatkar B, Dabrowski K, Abbasalizadeh A, Arslan M (2014) Effect of thiamine injection on growth performance, hematology and germinal vesicle migration in sterlet sturgeon Acipenser ruthenus L. Aquacult Int 22:1563–1576CrossRefGoogle Scholar
  40. Gillis TE, Ballantyne JS (1996) The effects of starvation on plasma free amino acid and glucose concentrations in lake sturgeon. J Fish Biol 49:1306–1316CrossRefGoogle Scholar
  41. Georgiadis MP, Hedrick RP, Johnson WO, Gardner IA (2000a) Growth of white sturgeon (Acipenser transmontanus) following recovery from stunted stage in a commercial farm in California, USA. Prev Vet Med 43:283–291PubMedCrossRefGoogle Scholar
  42. Georgiadis MP, Hedrick RP, Johnson WO, Gardner IA (2000b) Mortality and recovery of runt white sturgeon (Acipenser transmontanus) in a commercial farm in California, USA. Prev Vet Med 43:269–281PubMedCrossRefGoogle Scholar
  43. Holčik J (1989) The freshwater fishes of Europe. General introduction to fishes acipenseriforms, vol 1–2. AULA Verlag, Wiesbaden, GermanyGoogle Scholar
  44. Hornick JL, Van Eenaeme C, Gérard O, Dufrasne I, Istasse L (2000) Mechanisms of reduced and compensatory growth. Dom Anim Endocrinol 19:121–132CrossRefGoogle Scholar
  45. Hoseinifar SH, Ringø E, Shenavar Masouleh A, Esteban MÁ (2014) Probiotic, prebiotic and synbiotic supplements in sturgeon aquaculture: a review. Rev Aquacult 6:1–14CrossRefGoogle Scholar
  46. Hung SSO (1991a) Sturgeon, Acipenser spp. In: Wilson RP (ed) Handbook of nutrient requirements of finfish. CRC Press, Boca Raton, FL, pp 153–160Google Scholar
  47. Hung SSO (1991b) Choline requirement of hatchery-produced juvenile white sturgeon. Aquaculture 78:183–194CrossRefGoogle Scholar
  48. Hung SSO, Fynn-Aikins FK, Lutes PB, Xu R (1989) Ability of juvenile white sturgeon (Acipenser transmontanus) to utilize different carbohydrate sources. J Nut 119:727–733CrossRefGoogle Scholar
  49. Hung SS, Deng D-F (2002) Sturgeon, Acipenser spp. In: Webster CD, Lim C (eds) Nutrient requirements and feeding of finfish for aquaculture. CAB International, England, pp 344–357CrossRefGoogle Scholar
  50. Hung SSO, Liu W, Li H, Storebakken T, Cui Y (1997a) Effect of starvation on some morphological and biochemical parameters in white sturgeon, Acipenser transmontanus. Aquaculture 151:357–363CrossRefGoogle Scholar
  51. Hung SSO, Storebakken T, Cui Y, Tian L, Einen O (1997b) High energy diets for white sturgeon, Acipenser transmontanus, Richardson. Aquacult Nut 3:281–286CrossRefGoogle Scholar
  52. Jatteau P (1997) Daily patterns of ammonia nitrogen output of Siberian sturgeon Acipenser baerii (Brandt) of different body weights. Aquac Res 28:551–557CrossRefGoogle Scholar
  53. Kasumyan AO (1994) Olfactory sensitivity of the sturgeon to free amino acids. Biophysics 39:519–522Google Scholar
  54. Kasumyan AO, Taufik LR (1994) Behaviour reaction of juvenile sturgeons (Acipenseridae) to amino acids. J Appl Ichthyol 34:90–103Google Scholar
  55. Kaushik S, Breque J, Blanc D (1991) Requirements for protein and essential amino acids and their utilization by Siberian sturgeon (Acipenser baerii). In: Williot P (ed) Acipenser. Proceedings of the first International Symposium on Sturgeon. CEMAGREF, Antony, France, pp 25–37Google Scholar
  56. Kaushik S, Breque J, Blanc D (1994) Apparent amino acid availability and plasma free amino acid levels in Siberian Sturgeon (Acipenser baerii). Comp Biochem Physiol 107A:433–438Google Scholar
  57. Kaushik S, Luquet P, Blanc D, Paba A (1989) Studies on the nutrition of Siberian sturgeon, Acipenser baerii: I. Utilization of digestible carbohydrates by sturgeon. Aquaculture 76:97–107CrossRefGoogle Scholar
  58. Kiessling A, Hung SSO, Storebakken T (1993) Differences in protein mobilization between ventral and dorsal parts of white epaxial muscle from fed, fasted and re-fed white sturgeon (Acipenser transmontanus). J Fish Biol 43:401–408CrossRefGoogle Scholar
  59. Köksal G, Rad F, Kindir M (2000) Growth performance and feed conversion efficiency of Siberian sturgeon juveniles (Acipenser baerii) reared in concrete raceways. Turk J Vet Anim Sci 24:435–442Google Scholar
  60. Lin JH, Cui Y, Hung SSO, Shiau SY (1997) Effect of feeding strategy and carbohydrate source on carbohydrate utilization by white sturgeon and hybrid tilapia. Aquaculture 148:201–211CrossRefGoogle Scholar
  61. Lou L, Ai L, Li T, Xue M, Wang J, Li W, Wu X, Liang X (2015) The impact of dietary DHA/EPA ratio on spawning performance, egg and offspring quality in Siberian sturgeon (Acipenser baeri). Aquaculture 437:140–145CrossRefGoogle Scholar
  62. Lovell RT, Limsuwan T (1982) Intestinal synthesis and dietary nonessentiality of vitamin B12 for Tilapia nilotica. Trans Am Fish Soc 111:485–490CrossRefGoogle Scholar
  63. Mahious AS, Ollevier F (2005) Probiotics and prebiotics in aquaculture: a review. In: Agh N, Sorgeloos P (eds). 1st Regional Workshop on Techniques for Enrichment of Live Food for Use in Larviculture. Urima, IranGoogle Scholar
  64. Mazurkiewicz J, Przybył A, Golski J (2009) Usability of some plant protein ingredients in the diets of Siberian sturgeon Acipenser baerii Brandt. Arch Polish Fish 17:45–52Google Scholar
  65. McCue MD (2010) Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Bioch Physiol 156A:1–18Google Scholar
  66. Médale F, Kaushik S (1991) Energy utilization by farmed Siberian sturgeon (Acipenser baerii) from 3 age classes. In: Williot P (ed) Acipenser. Proceedings of the first International Symposium on Sturgeon. CEMAGREF, Antony, France, pp 13–23Google Scholar
  67. Médale F, Blanc D, Kaushik S (1991) Studies on the nutrition of Siberian sturgeon, Acipenser baerii. II. Utilization of dietary non-protein energy by sturgeon. Aquaculture 93:143–154CrossRefGoogle Scholar
  68. Médale F, Corraze G, Kaushik S (1995) Nutrition of farmed Siberian sturgeon. In: Gershanovich AD, Smith TIJ (eds) Proceeding of the third International Symposium on Sturgeons. VNIRO Publishing, Moscow, RussiaGoogle Scholar
  69. Moreau R, Kaushik SJ, Dabrowski K (1996) Ascorbic acid status as affected by dietary treatment in the Siberian sturgeon (Acipenser baerii Brandt): tissue concentration, mobilisation and L-gulonolactone oxidase activity. Fish Physiol Biochem 15:431–438PubMedCrossRefGoogle Scholar
  70. Moreau R, Dabrowski K, Sato PH (1999a) Renal L-gulono-1, 4- lactone oxidase activity as affected by dietary ascorbic acid in lake sturgeon (Acipenser fulvescens). Aquaculture 180:250–257CrossRefGoogle Scholar
  71. Moreau R, Dabrowski K, Czesny S, Chila F (1999b) Vitamin C-vitamin E interaction in juvenile lake sturgeon (Acipenser fulvescens), a fish able synthesize ascorbic acid. J Appl Ichthyol 15:252–257CrossRefGoogle Scholar
  72. Morshedi V, Kochanian P, Bahmani M, Yazdani-Sadati M, Pourali H, Ashouri G, Pasha-Zanoosi H, Azodi M (2013) Compensatory growth in sub-yearling Siberian sturgeon, Acipenser baerii Brandt, 1869: effects of starvation and refeeding on growth, feed utilization and body composition. J Appl Ichthyol 29:978–983CrossRefGoogle Scholar
  73. Moslehi F, Sattari M, Khoshkholgh M, Shenavar Masule A, Abbasalizade A (2015) The effect of Pediococcus pentosaceus as a probiotic on growth and immune factors of Siberian sturgeon (Acipenser baerii). Fish Sci Technol 3:81–92. (in Persian)Google Scholar
  74. Najafi M, Falahatkar B, Safarpour Amlashi A, Tolouei Gilani MH (2017) The combined effects of feeding time and dietary lipid levels on growth performance in juvenile beluga sturgeon Huso huso. Aquacult Int 25:31–45Google Scholar
  75. Najafipour Moghadam E, Falahatkar B, Kalbassi M (2011) Effects of lecithin on growth and hematological indices in juveniles of Siberian sturgeon (Acipenser baerii Brandt 1869). Iran Sci Fish J 20:143–154. (in Persian)Google Scholar
  76. Najafipour Moghadam E, Falahatkar B, Kalbassi Masjed Shahi M (2015) Changes in dietary and muscle fatty acids composition in Siberian sturgeon (Acipenser baerii Brandt 1869) fed with different levels of lecithin. J Oceanograph 6:97–105. (in Persian)Google Scholar
  77. Najdegerami EH, Tran TN, Defoirdt T, Marzorati M, Sorgeloos P, Boon N, Bossier P (2012) Effects of poly-β-hydroxybutyrate (PHB) on Siberian sturgeon (Acipenser baerii) fingerlings performance and its gastrointestinal tract microbial community. FEMS Microbiol Ecol 79:25–33PubMedCrossRefGoogle Scholar
  78. Ng WK, Hung SSO, Herold MA (1996) Poor utilization of dietary free amino acids by white sturgeon. Fish Physiology Biochem 15:131–142CrossRefGoogle Scholar
  79. Nieminen P, Westenius E, Halonen T, Mustonen A-M (2014) Fatty acid composition in tissues of the farmed Siberian sturgeon (Acipenser baerii). Food Chem 159:80–84PubMedCrossRefGoogle Scholar
  80. NRC (2011) Nutrient requirements of fish and shrimp. National Research Council, The National Academies Press, Washington, DC, p 376Google Scholar
  81. Palmegiano GB, Agradi E, Forneris G, Gai F, Gasco L, Rigamonti E, Sicuro B, Zoccarato I (2005) Spirulina as a nutrient source in diets for growing sturgeon (Acipenser baerii). Aquac Res 36:188–195CrossRefGoogle Scholar
  82. Pelissero C, Cuisset B, Le Menn F (1989) The influence of sex steroids in commercial fish meals and fish diets on plasma concentration of estrogens and vitellogenin in cultured Siberian sturgeon Acipenser baerii. Aquatic Liv Res 2:161–168CrossRefGoogle Scholar
  83. Pelissero C, Le Menn F, Kaushik S (1991) Estrogenic effect of dietary soya bean meal on vitellogenesis in cultured Siberian sturgeon Acipenser baerii. Gen Comp Endocrinol 83:447–457PubMedCrossRefGoogle Scholar
  84. Pourgholam MA, Khara H, Safari R, Sadati MAY, Aramli MS (2015) Dietary administration of Lactobacillus plantarum enhanced growth performance and innate immune response of Siberian sturgeon, Acipenser baerii. Probiot Antimicrob Prot 8:1–7Google Scholar
  85. Poursaeid S, Falahatkar B, Van Der Kraak G (2015) Short-term effects of cortisol implantation on blood biochemistry and thyroid hormones in previtellogenic great sturgeon Huso huso. Comp Biochem Physiol 179A:197–203CrossRefGoogle Scholar
  86. Pyka J, Kolman R (2003) Feeding intensity and growth of Siberian sturgeon Acipenser baerii Brandt in pond cultivation. Arch Ryb Polsk 11:287–294Google Scholar
  87. Rad F, Köksal G, Kindir M (2003) Growth performance and food conversion ratio of Siberian sturgeon (Acipenser baerii Brandt) at different daily feeding rates. Turk J Vet Anim Sci 27:1085–1090Google Scholar
  88. Razgardani Sharahi A, Falahatkar B, Efatpanah I (2016) Replacement of fish meal with gammarus meal and its effects on growth and body composition of juvenile Siberian sturgeon, Acipenser baerii (Brandt, 1869). J Aquatic Ecol 6:102–113 (in Persian)Google Scholar
  89. Ronyai A, Csengeri I, Varadi L (2002) Partial substitution of animal protein with full fat soybean meal and amino acid supplementation in the diet of Siberian sturgeon (Acipenser baerii). J Appl Ichthyol 18:682–684CrossRefGoogle Scholar
  90. Rurangwa E, Delaedt Y, Geraylou Z, Van De Wiele T, Courtin CM, Delcour JA, Ollevier F (2008) Dietary effect of arabinoxylan oligosaccharides on zootechnical performance and hindgut microbial fermentation in Siberian sturgeon and African catfish. Aquaculture Europe, Krakow, PolandGoogle Scholar
  91. Ruban GI (2005) The Siberian sturgeon Acipenser baerii Brandt: species structure and ecology. World Sturgeon Conservation Society-Special Publication, No.1, Norderstedt, Germany, p 203Google Scholar
  92. Ruban GI, Konoplja LA (1994) Food of Siberian sturgeon Acipenser baerii from the Indigirka and Kolyma rivers. Vop Ichtiol 34:130–132. (in Russian)Google Scholar
  93. Safarpour Amlashi A, Falahatkar B, Sattari M, Tolouei MH (2011) Effect of dietary vitamin E on growth, muscle composition, hematological and immunological parameters in sub-yearling beluga, Huso huso. Fish Shellfish Immunol 30:807–814PubMedCrossRefGoogle Scholar
  94. Shi X, Wang R, Zhuang P, Zhang L, Feng G (2013) Fluoride retention after dietary fluoride exposure in Siberian sturgeon Acipenser baerii. Aquac Res 44:176–181CrossRefGoogle Scholar
  95. Shiau SY, Lung CQ (1993) No dietary vitamin B12 required for juvenile tilapia Oreochromis niloticus × O. aureus. Comp Biochem Physiol 105A:147–150Google Scholar
  96. Shirvan S, Falahatkar B, Noveirian H, Abasalizadeh A (2013) Effect of long-term starvation and restricted feeding on growth performance and body composition of juvenile Siberian sturgeon (Acipenser baerii Brandt 1869). Iran Sci Fish J 22:91–102. (in Persian)Google Scholar
  97. Sicuro B, Piccinno M, Daprà F, Gai F, Vilella S (2015) Utilization of rice protein concentrate in Siberian sturgeon (Acipenser baerii Brandt) nutrition. Turk J Fish Aquatic Sci 15:313–319Google Scholar
  98. Soleimani SM, Sajjadi MM, Falahatkar B, Yazdani MA (2016) Replacement fish meal with earthworm powder (Eisenia foetida) in juvenile Acipenser baerii and the effect on growth performance, feed efficiency and body composition. J Aquatic Ecol 5:21–30. (in Persian)Google Scholar
  99. Steffens W (2008) Significance of aquaculture for the conservation and restoration of sturgeon populations. Bulgar J Agri Sci 14:155–164. (in Persian)Google Scholar
  100. Taati R, Mohseni M, Khoshsima S (2015) Effect of different sources and levels of carbohydrate (glucose and corn starch) on feed efficiency and carcass composition of juvenile Siberian sturgeon (Acipenser baerii). Fish Sci Technol 4:77–88Google Scholar
  101. Walton MJ, Cowey CB (1982) Aspects of intermediary metabolism in salmonid fish. Comp Biochem Physiol 73B:59–79Google Scholar
  102. Wen H, Yan AS, Gao Q, Jiang M, Wei QW (2008) Dietary vitamin a requirement of juvenile Amur sturgeon (Acipenser schrenckii). J Appl Ichthyol 24:534–538CrossRefGoogle Scholar
  103. Williot P, Rochard E, Castelnaud G, Rouault T, Brun R, Lepage M, Elie P (1997) Biological characteristics of European Atlantic sturgeon, Acipenser sturio, as the basis for a restoration program in France. Environ Biol Fish 48:359–370CrossRefGoogle Scholar
  104. Williot P, Sabeau L, Gessner J, Arlati G, Bronzi P, Gulyas T, Berni P (2001) Sturgeon farming in Western Europe: recent developments and perspectives. Aqua Living Res 14:367–374CrossRefGoogle Scholar
  105. Williot P, Arlati G, Chebanov M, Gulyas T, Kasimov R, Kirschbaum F, Patriche N, Pavlovskaya L, Poliakova L, Pourkazemi M, Yu K, Zhuang P, Zholdasova IM (2002) Status and management of Eurasian sturgeon: an overview. Int Rev Hydrobiol 87:483–506CrossRefGoogle Scholar
  106. Wilson RP, Poe WE (1988) Choline nutrition of fingerling channel catfish. Aquaculture 68:65–71CrossRefGoogle Scholar
  107. Xie Z, Niu C, Zhang Z, Bao L (2006) Dietary ascorbic acid may be necessary for enhancing the immune response in Siberian sturgeon (Acipenser baerii), a species capable of ascorbic acid biosynthesis. Comp Biochem Physiol 145A:152–157CrossRefGoogle Scholar
  108. Xu R, Hung SSO, German JB (1996) Effects of dietary lipids on the fatty acid composition of triglycerides and phospholipids in tissues of white sturgeon. Aquac Nutr 2:101–109CrossRefGoogle Scholar
  109. Xu Q, Xu H, Wang C, Zheng Q, Sun D (2011) Studies on dietary phosphorus requirement of juvenile Siberian sturgeon Acipenser baerii. J Appl Ichthyol 27:709–714CrossRefGoogle Scholar
  110. Xue M, Yun B, Wang J, Sheng H, Zheng Y, Wu X, Qin Y, Li P (2012) Performance, body compositions, input and output of nitrogen and phosphorus in Siberian sturgeon, Acipenser baerii Brandt, as affected by dietary animal protein blend replacing fishmeal and protein levels. Aquac Nutr 18:493–501CrossRefGoogle Scholar
  111. Yazdani Sadati M, Rezaii E (2015) The effect of processed soy bean meal (SPH) on growth and body composition of juvenile fish Acipenser baerii. Iran Sci Fish J 23:73–84. (in Persian)Google Scholar
  112. Yazdani-Sadati MA, Sayed Hassani M, Pourkazemi M, Shakourian M, Pourasadi M (2014) Influence of different levels of dietary choline on growth rate, body composition, hematological indices and liver lipid of juvenile Siberian sturgeon Acipenser baerii Brandt, 1869. J Appl Ichthyol 30:1632–1636CrossRefGoogle Scholar
  113. Yun B, Xue M, Wang J, Sheng H, Zheng Y, Wu X, Li J (2014) Fishmeal can be totally replaced by plant protein blend at two protein levels in diets of juvenile Siberian sturgeon, Acipenser baerii Brandt. Aquac Nutr 20:69–78CrossRefGoogle Scholar
  114. Zhang T, Zhuang P, Zhang LZ, Wang B, Gao LJ, Xia YT, Tian MP (2009) Effects of initial feeding on the growth, survival, and body biochemical composition of Siberian sturgeon (Acipenser baerii) larvae. Ying Yong Sheng Tai Xue Bao 20:358–362. (In Chinese)PubMedGoogle Scholar
  115. Zhu H, Gong G, Wang J, Wu X, Xue M, Niu C, Guo L, Yu Y (2011) Replacement of fish meal with blend of rendered animal protein in diets for Siberian sturgeon (Acipenser baerii Brandt), results in performance equal to fish meal fed fish. Aquac Nutr 17:389–395CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fisheries Department, Faculty of Natural ResourcesUniversity of GuilanGuilanIran

Personalised recommendations