Skip to main content

Abstract

Intensive research has been carried out over the past few years to find industrial-scale methods for the preparation of monolayer or few-layer graphene. However, large-scale, economical production of graphene with a low level of defects remains challenging. In this chapter, we review the research on several techniques for production of single- and few-layer graphene, particularly concerning mechanical exfoliation of high-quality graphene. We report our production scheme for graphite nanosheets from natural graphite. Crystalline graphite nanosheets were successfully produced from natural graphite powder by solution-phase synthesis of graphite intercalation compounds, following wet planetary-ball milling. We emphasize the high potential of graphene as a conductive composite film. Some composite films derived from phenolic resin and graphite nanosheets displayed much higher electrical conductivities than those of films from natural graphite particles. We also show that the stage structure of synthetic graphite intercalation compounds affected film conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Yamanaka, T. Nishino, T. Fujimoto, Y. Kuga, Production of thin graphite sheets for a high electrical conductivity film by the mechanical delamination of ternary graphite intercalation compounds. Carbon 50, 5027–5033 (2012)

    Article  Google Scholar 

  2. Y. Hirabayashi, S. Nakahira, S. Yamanaka, T. Fujimoto, Y. Kuga, Characterization of conductivity of graphite-phenolic resin composite and its application to heating plywood. J. Soc. Powder Technol. Jpn. 49, 164–170 (2012)

    Article  Google Scholar 

  3. A. Wakabayashi, Y. Sasakawa, T. Dobashi, T. Yamamoto, Self-assembly of tin oxide nanoparticles: localized percolating network formation in polymer matrix. Langmuir 22, 9260–9263 (2006)

    Article  Google Scholar 

  4. K. Ichimura, Technologies for LCD Color Filters (CMC, Tokyo, 2010)

    Google Scholar 

  5. K. Nagata, H. Iwabuki, H. Nigo, Effect of particle size of graphites on electrical conductivity of graphite/polymer composite. Compos. Interfaces 6, 483–495 (1998)

    Article  Google Scholar 

  6. M.H. Al-Saleh, U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47, 1738–1746 (2009)

    Article  Google Scholar 

  7. D.M. Bigg, Mechanical, thermal, and electrical properties of metal fiber-filled polymer composites. Plym. Eng. Sci. 19, 1188–1192 (1979)

    Article  Google Scholar 

  8. I.-G. Chen, W.B. Johnson, Alternating-current electrical properties of random metal-insulator composites. J. Mater. Sci. 26, 1565–1576 (1991)

    Article  Google Scholar 

  9. T. Katsura, M.R. Kamal, L.A. Utracki, Electrical and thermal properties of polypropylene filled with steel fibers. Polym. Compos. 5, 193–202 (1985)

    Google Scholar 

  10. T. Katsura, M.R. Kamal, L.A. Utracki, Some properties of polypropylene filled with metal fibers. Polym. Compos. 6, 282–295 (1985)

    Article  Google Scholar 

  11. G.G. Tibbetts, M.L. Lake, K.L. Strong, B.P. Rice, A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos. Sci. Technol. 67, 1709–1718 (2007)

    Article  Google Scholar 

  12. Y.S. Wang, M.A. O'Gurkis, T. Lindt, Electrical properties of exfoliated-graphite filled polyethylene composites. Polym. Compos. 7, 349–354 (1986)

    Article  Google Scholar 

  13. P.-C. Ma, N.A. Siddiqui, G. Marom, J.-K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos. Part A 41, 1345–1367 (2010)

    Article  Google Scholar 

  14. W. Bauhofer, J.Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69, 1486–1498 (2009)

    Article  Google Scholar 

  15. U. Dettlaff-Weghkowska, M. Kaempgen, B. Hornbostel, V. Skakalova, J.P. Wang, J.D. Liang, Conducting and transparent SWNT/polymer composites. Phys. Status Solidi B 243, 3440–3444 (2006)

    Article  Google Scholar 

  16. B. Hornbostel, P. Potschke, J. Kotz, S. Roth, Single-walled carbon nanotubes/polycarbonate composites: basic electrical and mechanical properties. Phys. Status Solidi B 243, 3445–3451 (2006)

    Article  Google Scholar 

  17. A. Mierczynska, M. Mayne-L’Hermite, G. Boiteux, Electrical and mechanical properties of carbon nanotube/ultrahigh-molecular-weight polyethylene composites prepared by a filler prelocalization method. J. Appl. Polym. Sci. 105, 158–168 (2007)

    Article  Google Scholar 

  18. J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer, A.H. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44, 5893–5899 (2003)

    Article  Google Scholar 

  19. T. Wang, C.H. Lei, A.B. Dalton, C. Creton, Y. Lin, K.A.S. Fernando, Y.P. Sun, M. Manea, J.M. Asua, J.L. Keddie, Waterborne, nanocomposite pressure-sensitive adhesives with high tack energy, optical transparency, and electrical conductivity. Adv. Mater. 18, 2730–2734 (2006)

    Article  Google Scholar 

  20. G. Wu, T. Miura, S. Asai, M. Sumita, Carbon black-loading induced phase fluctuations in PVDF/PMMA miscible blends: dynamic percolation measurements. Polymer 42, 3271–3279 (2001)

    Article  Google Scholar 

  21. G. Wu, T. Miura, S. Asai, M. Sumita, A self-assembled electric conductive network in short carbon fiber filled poly(methyl methacrylate) composites with selective adsorption of polyethylene. Macromolecules 32, 3534–3536 (1999)

    Article  Google Scholar 

  22. M.H. Al-Saleh, U. Sundararaj, A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47, 2–22 (2009)

    Article  Google Scholar 

  23. G. Chen, D. Wu, W. Weng, C. Wu, Exfoliation of graphite flake and its nanocomposites. Carbon 41, 619–621 (2003)

    Article  Google Scholar 

  24. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.B.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  Google Scholar 

  25. Y. Kuga, M. Shirahige, Y. Ohira, K. Ando, Production of finely ground natural graphite particles with high electrical conductivity by controlling the grinding atmosphere. Carbon 40, 695–701 (2002)

    Article  Google Scholar 

  26. Y. Kuga, M. Shirahige, T. Fujimoto, Y. Ohira, A. Ueda, Production of natural graphite particles with high electrical conductivity by grinding in alcoholic vapors. Carbon 42, 293–300 (2004)

    Article  Google Scholar 

  27. M. Shirahige, J. Iida, T. Fujimoto, Y. Kuga, M. Kawai, J. Katamura, Characteristics and hydrogen desorption property of nanostructured graphite produced by grinding in vacuum atmospheres. J. Soc. Powder Technol. Jpn. 42, 185–191 (2005)

    Article  Google Scholar 

  28. B.G. Kim, S.K. Choi, H.S. Chung, J.J. Lee, F. Saito, Grinding characteristics of crystalline graphite in a low-pressure attrition system. Powder Technol. 126, 22–27 (2002)

    Article  Google Scholar 

  29. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  30. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)

    Article  Google Scholar 

  31. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Colema, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008)

    Article  Google Scholar 

  32. C. Knieke, A. Berger, M. Voigt, R.N.K. Taylor, J. Rohrl, W. Peukert, Scalable production of graphene sheets by mechanical delamination. Carbon 48, 3196–3204 (2010)

    Article  Google Scholar 

  33. M. Lotya, Y. Hernandez, J.K. Paul, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z. Wang, I.T. McGovern, G.S. Duesberg, J.N. Coleman, Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2009)

    Article  Google Scholar 

  34. K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O.M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S.E. O’Brien, E.K. McGuire, B.M. Sanchez, G.S. Duesberg, N. McEvoy, T.J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, J.N. Coleman, Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624–630 (2014)

    Article  Google Scholar 

  35. A.G. Klechikov, G. Mercier, P. Merino, S. Blanco, C. Merino, A.V. Talyzin, Hydrogen storage in bulk graphene-related materials. Microporous Mesoporous Mater. 210, 46–51 (2015)

    Article  Google Scholar 

  36. S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D.L. Wood III, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105, 52–76 (2016)

    Article  Google Scholar 

  37. C.-J. Shih, A. Vijayaraghavan, R. Krishnan, R. Sharma, J.-H. Han, M.-H. Ham, Z. Jin, S. Lin, G.L.C. Paulus, N.F. Reuel, Q.H. Wang, D. Blankschtein, M.S. Strano, Bi- and trilayer graphene solutions. Nat. Nanotechnol. 6, 439–445 (2011)

    Article  Google Scholar 

  38. J.N. Israelachvili, Intermolecular and Surfaces Forces, 2nd edn. (Academic, London, 1992)

    Google Scholar 

  39. M. Alanyalioglu, J.J. Segura, J. Oro-Sole, N. Casan-Pastor, The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon 50, 142–152 (2012)

    Article  Google Scholar 

  40. G.P. Moriarty, J.N. Wheeler, C. Yu, J.C. Grunlan, Increasing the thermoelectric power factor of polymer composites using a semiconducting stabilizer for carbon nanotubes. Carbon 50, 885–895 (2012)

    Article  Google Scholar 

  41. H. Xu, H. Abe, M. Naito, Y. Fukumori, H. Ichikawa, S. Endoh, K. Hata, Efficient dispersing and shortening of super-growth carbon nanotubes by ultrasonic treatment with ceramic balls and surfactants. Adv. Powder Technol. 21, 551–555 (2010)

    Article  Google Scholar 

  42. N. Erdinç, S. Göktürk, M. Tunçay, A study on the adsorption characteristics of an amphiphilic phenothiazine drug on activated charcoal in the presence of surfactants. Colloids Surf. B 75, 194–203 (2010)

    Article  Google Scholar 

  43. M. Majumder, C. Rendall, M. Li, N. Behabtu, J.A. Eukel, R.H. Hauge, H.K. Schmidt, M. Pasquali, Insights into the physics of spray coating of SWNT films. Chem. Eng. Sci. 65, 2000–2008 (2010)

    Article  Google Scholar 

  44. T.S. Ong, H. Yang, Effect of atmosphere on the mechanical milling of natural graphite. Carbon 38, 2077–2085 (2000)

    Article  Google Scholar 

  45. O. Tanaike, M. Inagaki, Ternary intercalation compounds of carbon materials having a low graphitization degree with alkali metals. Carbon 35, 831–836 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Yamanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Yamanaka, S., Takase, M., Kuga, Y. (2017). Production of Single- and Few-Layer Graphene from Graphite. In: Kaneko, S., et al. Carbon-related Materials in Recognition of Nobel Lectures by Prof. Akira Suzuki in ICCE. Springer, Cham. https://doi.org/10.1007/978-3-319-61651-3_5

Download citation

Publish with us

Policies and ethics