Advertisement

Shallow Seismic Refraction Tomography and MASW Survey for Investigating the Fractures Along Qena-Safaga Road, South of Egypt

  • Ahmed M. Abdel GowadEmail author
  • Michele Punzo
  • Vincenzo Di Fiore
  • Daniela Tarallo
  • Assem El-Haddad
  • Abdel Hady Al-Akraby
Conference paper
Part of the Sustainable Civil Infrastructures book series (SUCI)

Abstract

Qena-Safaga road, which is one of the vital transportation lines in south of Egypt, is affected by a set of recent NE-SW to ENE-WSW vertical tensile and en echelon fractures. These fractures are distributed for about 12 km along both sides of the road and constitute a major threat to the infrastructure and environment. Some studies suggested the tectonic origin of these fractures while others suggested that they were formed due to geotechnical problems in the shallow subsurface soil. In order to study the nature and distribution of these fractures in the subsurface, low cost seismic surveys were conducted at the area of KM 22 of Qena-Safaga road. Eleven shallow seismic refraction lines as well as three MASW lines were acquired. The seismic refraction data were analyzed using tomographic methods to produce 2D velocity-depth models. To estimate the near surface seismic properties such as Vp/Vs and Poisson’s ratio that are important for the geologic interpretation of the data, MASW data where analyzed to obtain 1D shear wave velocity models. 3D images including 3D volume, fence diagram and depth slices were also produced to study the vertical and lateral variation of the P-wave velocity. In the resulted 2D tomographic models, three seismic units were deduced. The first unit represents the thin weathered surface layer having P-wave velocities of 300–700 m/s. The second unit has P-wave velocities of 700–1600 m/s and S-wave velocities of 281–926 m/s. It may represent the marl unit of Pliocene Durri Formation. Its thickness ranges from 11.8 m to 30 m. The bedrock was deduced to be at depths from 13 to 40 m and is characterized by velocities greater than 1600 m/s. The fractures were traced down to the bedrock along the seismic sections. The variable thickness of the marl unit as well as the variable depths of the bedrock were deduced to be resulting from the effect of subsurface.

Notes

Acknowledgments

The authors would like to thank Dr. Ahmed M. Ibrahim Ahmed, Assistant lecturer in Department of Geology, Faculty of Science, South Valley University, Qena, Egypt for sharing valuable information and results of his ongoing geological and geotechnical study on the fractured zone of Qena-Safaga road. Also, we would like to thank Dr. J. Wasowski and an anonymous reviewer for their valuable comments and suggestions.

References

  1. Abidin, M.H.Z., Saad, R., Ahmad, F., Wijeyesekera, D.C., Baharuddin, M.F.T.: Seismic refraction investigation on near surface landslides at the Kundasang area in Sabah, Malaysia. In: International Conference on Advances Science and Contemporary Engineering (ICASCE 2012) (2012). Procedia Engineering, vol. 50, pp. 516–531Google Scholar
  2. Ahmed, A.M.I.: Geotechnical and sedimentological studies of the quaternary sediments at Qena Region, Egypt. M.Sc. Thesis (2012). 125 pagesGoogle Scholar
  3. Akawy, A.: Structural geomorphology and neotectonics of the Qina-Safaga district, Egypt. N. Jb. Geol. Palaont Abh. 226, 95–130 (2002)Google Scholar
  4. Akawy, A., Kamal El Din, G.M.: Middle eocene - recent tectonics in the Qina area, Upper Egypt. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 240, 19–51 (2006). doi: 10.1127/njgpa/240/2006/19 Google Scholar
  5. AL-Khersan, E.H., Khorshid, S.Z., Faraj H.H.: Determination some of physical and geotechnical properties of the calcareous rocks in Kufa Quarry using ultrasonic velocities. Iraqi Natl. J. Earth Sci. 11(2), 11–36 (2011)Google Scholar
  6. Almeida, F., Moura, R., Teves Costa, P., Oliveira, C.S.: Caracterização Dinâmica das Areias de Faro-Quarteira Através de Ensaios Sísmicos. In: 4th Meeting on Seismology and Seismic Engineering, Faro, Portugal, Expanded Abstracts, pp. 233–243 (1999)Google Scholar
  7. Askalany, M.M.S.: Geological studies on the Neogene and Quaternary sediments of the Nile Basin, Upper Egypt. Ph.D. Thesis, Fac. Sci., Assuit Univ. (1988). 254 pagesGoogle Scholar
  8. Azab, M.A.: Assessment and management of natural hazards and disasters along Qena-Safaga road, central eastern desert, Egypt. J. Remote Sens. Space Sci. 12, 55–70 (2009)Google Scholar
  9. Badawy, A.: Seismicity of Egypt. Seismol. Res. Lett. 76(2), 149–160 (2005). doi: 10.1785/gssrl.76.2.149 CrossRefGoogle Scholar
  10. Basta, N.Z., Ismail, A.M., Salem, E.M., Eissa, G.K., Mohamed, A.Z., El Hakim, B.A.: Seismic activity at Qena-Safaga region. Unpublished internal report, The Egyptian Geological Survey and Mining Authority, Abbasyia, Cairo (1994)Google Scholar
  11. Böhm, G., Francese, R., Giorgi, M.: Integrated refraction seismics and tomographic study of a gravitational collapse phenomenon. Bollettino di Geofisica Teorica ed Applicata 53(4), 539–550 (2012). doi: 10.4430/bgta0081
  12. Bourbie, T., Coussy, O., Zinszner, B.: Acoustics of Porous Media. Gulf Publishing, Houston (1987). 334 pagesGoogle Scholar
  13. CONOCO: Geological map of Egypt, Sheet of Asuit, scale 1:500 000 (1987)Google Scholar
  14. Davidovici, V.: Génie parasismique. École Nationale des Ponts et Chaussées, Paris, 1105 (1985)Google Scholar
  15. Dvorkin, J., Walls, J.D., Mavko, G.: Rock physics of marls. SEG Technical Program Expanded Abstracts, pp. 1784–1787 (2001)Google Scholar
  16. El-Akraby, A.M.: A contribution to the delineation of the geologic setting of the fracture area (km 19–31) along Qena-Safaga road, using geoelectrical studies. Ain Shams Sci. Bull. 38, 95–111 (2000)Google Scholar
  17. El-Gaby, S.: Architecture of the Egyptian basement complex. In: Proceedings of 5th International Conference of Basement Tectonics, Cairo, vol. 5, pp. 1–8 (1983)Google Scholar
  18. El-Gaby, S., List, F.K., Tehrani, R.: Geology, evolution and metallogenesis of the Pan-African belt in Egypt. In: El-Gaby, S., Greiling, R.O. (eds.) The Pan-African belt of Northeast Africa and Adjacent Areas, pp. 175–184. Friedr Viewgsohn, Braunschweig/Wiesbaden (1988)Google Scholar
  19. El-Haddad, A.E.: Development of portable weight dropper apparatus and field applications in Dakhla Oasis area, Western Desert, Egypt. Bull. Fac. Sci. Assiut Univ. 2(1-F), 103–119 (2003)Google Scholar
  20. El-Haddad, A.E., El-Akraby, A.M., Ismail, I.S., Abdel Gowad, A.M.: Investigation of groundwater potentiality in the eastern part of Qena, central Eastern Desert, Egypt, using 2D homogeneous function method. Arab J. Geosci. 7, 3011–3021 (2014). doi: 10.1007/s12517-013-0934-1 CrossRefGoogle Scholar
  21. El Hakim, B.A.: Study of aeromagnetic survey for Qena-Safaga area (A.R.E.). M.Sc. Thesis, Department of Physics, Faculty of Science, Alexandria University, Alexandria, Egypt (1978)Google Scholar
  22. EL-Kazazz, Y.A.: Active faulting along Qena-Safaga road, Eastern Desert, Egypt. In: The First International Conference on the Geology of Africa, vol. 2, pp. 385–404. Assiut Univ., Egypt (1999)Google Scholar
  23. Essien, U.E., Akankpo, A.O., Igboekwe, M.U.: Poisson’s ratio of surface soils and shallow sediments determined from seismic compressional and shear wave velocities. Int. J. Geosci. 5, 1540–1546 (2014). doi: 10.4236/ijg.2014.512125 CrossRefGoogle Scholar
  24. Galal, A.A.: Surveying and geotechnical studies for the evaluation of deformation along Qena-Safaga road. M.Sc. Thesis, Minia University (2012). 182 pagesGoogle Scholar
  25. Gebrande, H., Miller, H.: Refraktionsseismik. In: Angewandte Geowissenschaften II, Methoden der angewandten geophysik und mathematische verfahren in den geowissenschaften, pp. 226–260 (1985)Google Scholar
  26. Gurvich, I.: Seismic Prospecting. Mir Publishers, Moscow (1972)Google Scholar
  27. Hagedoorn, G.J.: The plus–minus method of interpreting seismic refraction sections. Geophys. Prospect. 7, 158–182 (1959). doi: 10.1111/j.1365-2478.1959.tb01460.x CrossRefGoogle Scholar
  28. Han, D.H., Nur, A., Morgan, D.: Effects of porosity and clay content on wave velocities in sandstones. Geophysics 51, 2093–2107 (1986). doi: 10.1190/1.1442062 CrossRefGoogle Scholar
  29. Ismail, A.M., Basta, N.Z., El-Hakim, B.: Seismic activity at Qena-Safaga region. Ann. Geol. Surv. Egypt V(XXIII), 707–712 (2000)Google Scholar
  30. Ismaiel, H.A.H., Makhloof, A.A., Mahmoud, A.A., Galal, A.A.: Geotechnical behavior of pliocene sedimentary rocks exposed along Qena-Safaga Road at Qena region, Egypt. Int. J. Min. Eng. Miner. Process. 1(2), 84–93 (2012). doi: 10.5923/j.mining.20120102.10 CrossRefGoogle Scholar
  31. Kroner, A.: Late Precambrian plate tectonics and orogeny: need to redefine the term Pan-African. In: Klerkx, J., Michot, J. (eds.) African Geology, Musee Royal de L’Afrique Central, Tervuren, pp. 23–28 (1984)Google Scholar
  32. Lankston, R.W.: High-resolution refraction seismic data acquisition and interpretation. In: Ward, S.H. (ed.) Geotechnical and Environmental Geophysics, vol. 1, pp. 45–73. Society of Exploration Geophysicists (1990). doi: 10.1190/1.9781560802785.ch3
  33. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1927). 104 pagesGoogle Scholar
  34. Makhloof, A.A., Mahmoud, A.A., Ismaiel, H.A.H., Galal, A.A.: Evaluation and interpretation of cracks along Qena-Safaga road using surveying techniques. Minia J. Eng. Technol. (MJET) 32(2), 194–203 (2013)Google Scholar
  35. Mesbah, M.A., Mousa, M.M., Odah, H.: Fault tracing using detailed land magnetic survey at Qena. Egypt. Egyptian Geophys. Soc. 14, 141–158 (1996)Google Scholar
  36. Moussa, M.M., El Arabi, A.M.: Soil radon survey for tracing active fault: a case study along Qena-Safaga road, Eastern Desert, Egypt. Radiat. Meas. 37, 211–216 (2003). doi: 10.1016/S1350-4487(03)2900039-8 CrossRefGoogle Scholar
  37. Omran, A.A., Philobbos, E.R., Riad, S., Othman, A.B.: Subsurface structures and their surface reflection in Wadi Qena and the surrounding area. Egypt J. Geol. 39(1), 313–338 (1995a)Google Scholar
  38. Omran, A.A., Philobbos, E.R., Riad, S., Othman, A.B.: Sedimentary basins and crustal thickness in Wadi Qena and the surrounding areas as interpreted from Bouguer anomalies. Egypt J. Geol. 39(1), 377–398 (1995b)Google Scholar
  39. Palmer, D.: An introduction to the generalized reciprocal method of seismic refraction interpretation. Geophysics 46, 1508–1518 (1981). doi: 10.1190/1.1441157 CrossRefGoogle Scholar
  40. Park, C.B., Miller, R.D., Miura, H.: Optimum field parameters of an MASW survey. SEG-J, Tokyo, pp. 22–23 (Expanded Abstract) (1999)Google Scholar
  41. Pavlović, V.D., Veličković, Z.S.: Measurement of the seismic wave propagation velocity in the real medium. Phys. Chem. Technol. 1(5), 63–73 (1998)Google Scholar
  42. Piip, V.B.: Local reconstruction of seismic refraction sections on the basis of homogeneous functions. Izvestiya Acad. Sci. USSR Phys. Solid Earth 27, 844–850 (1991)Google Scholar
  43. Piip, V.B.: 2D inversion of refraction traveltime curves using homogeneous functions. Geophys. Prospect. 49, 461–482 (2001). doi: 10.1046/j.1365-2478.2001.00270.x CrossRefGoogle Scholar
  44. Pipan, M., Forte, E., Dal Moro, G., Gabrielli, P.: Integrated seismic and GPR characterization of fractured rocks. In: Workshop on Hydrogeophysics – A Tool for Sustainable Use of Groundwater 2005, Palermo, Italy (2005)Google Scholar
  45. Price, N.J., Cosgrove, J.W.: Analysis of Geological Structures. Cambridge University Press, Cambridge (1990). 502 pagesGoogle Scholar
  46. Rühl, T.: Determination of shallow refractor properties by 3D CMP refraction seismic techniques. First Break 13, 69–77 (1995). doi: 10.3997/1365-2397.1995005 CrossRefGoogle Scholar
  47. Salem, H.S.: Poisson’s ratio and the porosity of surface soils and shallow sediments determined from seismic compressional and shear wave velocities. Geotechnique 4, 461–463 (2000). doi: 10.1680/geot.2000.50.4.461 CrossRefGoogle Scholar
  48. Shackleton, R.M.: Precambrian collision tectonics in Africa. In: Coward, M.P., Ries, A.C. (eds.) Collision Tectonics, pp. 329–349. Geological Society, Special Publication, London (1986). doi: 10.1144/GSL.SP.1986.019.01.19
  49. Sharma, H.D., Dukes, M.T., Olsen, D.M.: Field measurement of dynamic moduli and Poisson’s ratios of refuse and underlying soils at a landfill site. In: Landva, A., Knowles, G.D. (eds.) Geotechnics of Waste Landfills: Theory and Practice, pp. 57–70. American Society for Testing and Materials, Philadelphia (1990). doi: 10.1520/STP25299S
  50. Telford, W.M., Geldart L.P., Sheriff, R.E., Keys, D.A.: Applied Geophysics. Cambridge University Press, Cambridge (1976)Google Scholar
  51. Tokeshi, K., Harutoonian, P., Leo, C.J., Liyanapathirana, S.: Use of surface waves for geotechnical engineering applications in Western Sydney. Adv. Geosci. 35, 37–44 (2013). doi: 10.5194/adgeo-35-37-2013 CrossRefGoogle Scholar
  52. Xia, J., Miller, R.D., Park, C.B.: Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics 64, 691–700 (1999). doi: 10.1190/1.1444578 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ahmed M. Abdel Gowad
    • 1
    Email author
  • Michele Punzo
    • 2
  • Vincenzo Di Fiore
    • 2
  • Daniela Tarallo
    • 2
  • Assem El-Haddad
    • 3
  • Abdel Hady Al-Akraby
    • 1
  1. 1.Department of Geology, Faculty of ScienceSouth Valley UniversityQenaEgypt
  2. 2.Institute of Coastal Marine Environment, IAMC-CNRNaplesItaly
  3. 3.Department of Geology, Faculty of ScienceAssuit UniversityAssuitEgypt

Personalised recommendations