Advertisement

Karst Induced Geo-hazards in Egypt: Case Study Slope Stability Problems Along Some Selected Desert Highways

  • Ahmed M. YoussefEmail author
  • Abdel-Hamid El-Shater
  • Mohamed H. El-Khashab
  • Bosy A. El-Haddad
Conference paper
Part of the Sustainable Civil Infrastructures book series (SUCI)

Abstract

Karst environments are characterized by distinctive landforms related to dissolution characteristics. Karst terrains, frequently underlain by cavernous carbonate and/or evaporite rocks, may induce ground instability problems. Impacts and problems associated with karst are rapidly increasing as development expands upon the karst prone areas. This has led to an escalation of karst-related environmental and engineering problems such as landslides developed on rock cuts/slopes weakened by karstification features. In the current work, the effects of karstification and sinkholes on the stability of the rock cuts/slopes along some selected desert highways were evaluated. These highways represent the most used highways in Egypt, connecting most of the Governorates. They represent the backbone of Egyptian transportation and commercial traffic. Finally, the most optimum mitigation/remediation methods were summarized to decrease and minimize the consequences of slope instability.

Keywords

Slope stability Geohazards Karstification Sinkholes Egypt 

References

  1. Andriani, G.F., Parise, M.: On the applicability of geomechanical models for carbonate rock masses interested by karst processes. Environ. Earth Sci. 74, 7813–7821 (2015). doi: 10.1007/s12665-015-4596-z CrossRefGoogle Scholar
  2. Barany-Kevei, I., Gunn, J.: Essays in the Ecology and Conservation of Karst. Acta Geographica Szegedensis, XXXVI, (Special Issue) (2000) Google Scholar
  3. Bateman, V.: Development of a database to manage rockfall hazard: the Tennessee rockfall hazard database. In: Proceedings of 82nd Annual Meeting of Transportation Research Board, Washington, D.C. (2003)Google Scholar
  4. Beck, B.F.: Sinkholes: their geology, engineering and environmental impact. In: Proceedings of the First Multidisciplinary Conference on Sinkholes, Orlando, Florida 117 (1984)Google Scholar
  5. Beck, B.F.: Environmental and engineering effects of sinkholes, the processes behind the problems. Environ. Geol. Water Sci. 12(2), 71–78 (1988)CrossRefGoogle Scholar
  6. Burnett, A.D.: Engineering geology and site investigation - part 2: field studies. Ground engineering, pp. 29–32, July 1975Google Scholar
  7. Carbonel, D., et al.: Sinkhole characterization combining trenching, ground penetrating radar (GPR) and electrical resistivity tomography (ERT). Earth Surf. Process Landf. 39, 214–227 (2014)CrossRefGoogle Scholar
  8. Chau, K.Y., et al.: GIS based rockfall hazard map for Hong Kong. Int. J. Rock Mech. Min. Sci. 41(3), 846–851 (2004). doi: 10.1016/j.ijrmms.2004.03.146 CrossRefGoogle Scholar
  9. Cruden, D.M., Varnes, D.J.: Landslides types and processes. Landslides Investigation and Mitigation. Transportation Research Board, Special report, p. 247 (1996)Google Scholar
  10. Delle Rose, M., Parise, M.: Slope instability along the Adriatic coast of Salento, southern Italy. In: Proceedings IX International Symposium on Landslides, Rio de Janeiro (Brazil), 28 June–2 July 2004, vol. 1, pp. 399–404 (2004)Google Scholar
  11. De Waele, J., et al.: Geomorphology and natural hazards in karst areas: a review. Geomorphology 134(1–2), 1–8 (2011)CrossRefGoogle Scholar
  12. Dreybrodt, W.: Dissolution: carbonate rocks. In: Encyclopedia of Caves and Karst Science, p. 298. Fitzroy Dearborn, New York (2004)Google Scholar
  13. Dunne, T.: Geomorphic significance of subsurface flow. Groundwater geomorphology: the role of subsurface water in earth-surface processes and landforms, (252), 1 (1990)Google Scholar
  14. Fookes, P.G., Hawkins, A.B.: Limestone weathering: its engineering significance and a proposed classification scheme. Q. J. Eng. Geol. 21, 7–31 (1988)CrossRefGoogle Scholar
  15. Fookes, P.G., Sweeney, M.: Stabilization and control of local rock falls and degrading rock slopes. Q. J. Eng. Geol. Hydrogeol. 9(1), 37–55 (1976)CrossRefGoogle Scholar
  16. Ford, D.C., Williams, P.W.: Karst Geomorphology and Hydrology. Unwin Hyman, London (1989)CrossRefGoogle Scholar
  17. Ford, D.C., Williams, P.: Karst Hydrogeology and Geomorphology. Wiley, Chichester (2007). 576 p. ISBN: 978-0-470-84996-5CrossRefGoogle Scholar
  18. Gillieson. D.: Caves. Blackwell, Oxford. IUCN. 1996. Guidelines for Cave and Karst Protection. The World Conservation Union, Gland, Switzerland (1996)Google Scholar
  19. Gueguen, E., et al.: Geological controls in the development of palaeo-karst systems of High Murge (Apulia). Rend. online Soc. Geol. It. 21(1), 617–619 (2012)Google Scholar
  20. Gutiérrez, F.: Hazards associated with karst. In: Alcántara, I., Goudie, A. (eds.) Geomorphological Hazards and Disaster Prevention, pp. 161–175. Cambridge University Press, Cambridge (2010)Google Scholar
  21. Gutiérrez, F., et al.: Geological and environmental implications of the evaporite karst in Spain. Environ. Geol. 53(5), 951–965 (2008a)Google Scholar
  22. Gutiérrez, F., et al.: A genetic classification of sinkholes illustrated from evaporite paleokarst exposures in Spain. Environ. Geol. 53(5), 993–1006 (2008b)Google Scholar
  23. Gutiérrez, F., et al.: Late Holocene episodic displacement on fault scarps related to interstratal dissolution of evaporites (Teruel Neogene Graben, NE Spain). J. Struct. Geol. 34, 2–19 (2012)CrossRefGoogle Scholar
  24. Gutiérrez, F., Cooper, A.H.: Surface morphology of gypsum karst. In: Frumkin, A. (ed.) Treatise on Geomorphology, vol. 6, pp. 425–437 (2013). doi: 10.1016/B978-0-12-374739-6.00114-7
  25. Gutiérrez, F., et al.: A review on natural and human-induced geohazards and impacts in karst. Earth Sci. Rev. 138, 61–88 (2014). doi: 10.1016/j.earscirev.2014.08.002 CrossRefGoogle Scholar
  26. Hampton, M.A., et al.: Processes that govern the formation and evolution of coastal cliffs. In: Hampton, M.A., Griggs, G.B. (eds.) Formation, Evolution, and Stability of Coastal Cliffs - Status and Trends. U.S. Geological Survey Professional Paper 1693, pp. 7–38 (2004)Google Scholar
  27. Harrison, R.W., et al.: Karstification along an active fault zone in Cyprus. In: Kuniansky, E.L. (eds.) Proceedings of USGS Karst Interest Group, Shepherdstown (West Virginia), Water Resources Investigations Report 02-4174, pp. 45–48 (2002)Google Scholar
  28. Hoek, E.: Rock mechanics laboratory testing in the context of a consulting engineering organization. Int. J. Rock Mech. Min. Sci. Geomech. 14, 93–101 (1977)CrossRefGoogle Scholar
  29. Hoek, E.: Rock Mass Properties for Underground Mines, Underground Mining Methods: Engineering Fundamentals and International Case Studies, Colorado: Society for Mining, Metallurgy, and Exploration (SME) (2001). http://www.rocscience.com/hoek/references/H2001d.pdf
  30. Hoek, E., Bray, J.W.: Rock Slope Engineering Revised 3rd edn. (ISBN 0-419-16010-8), 1980, Institute of Mining and Metallurgy, E&FN Spon Press (1980)Google Scholar
  31. Hungr, O., et al.: Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia. Can. Geotech. J. 36, 224–238 (1999)CrossRefGoogle Scholar
  32. Iovine, G.G.R., et al.: Coupling limit equilibrium analyses and real-time monitoring to refine a landslide surveillance system in Calabria (southern Italy). Nat. Hazards Earth Syst. Sci. 10(11), 2341–2354 (2010)CrossRefGoogle Scholar
  33. Ivy-Ochs, S., et al.: Surface exposure dating of the Flims landslide, Graubünden, Switzerland. Geomorphology 103(1), 104–112 (2009)CrossRefGoogle Scholar
  34. Jaboyedoff, M., et al.: Use of terrestrial laser scanning for the characterization of retrogressive landslides in sensitive clay and rotational landslides in river banks. Can. Geotech. J. 46(12), 1379–1390 (2009)CrossRefGoogle Scholar
  35. Jaboyedoff, M., et al.: Slope tectonics: a short introduction, vol. 351, pp. 1–10. Geological Society, London, Special Publications (2011)Google Scholar
  36. Kay, D., et al.: Impacts of longwall mining to rivers and cliffs in the Southern Coalfield. In: Aziz, N. (ed.) Coal 2006: Coal Operators’ Conference, University of Wollongong and the Australasian Institute of Mining and Metallurgy, pp. 327–336 (2006)Google Scholar
  37. Khalily, M., et al.: Durability characterization of Abderaz Marly Limestone in the Kopet-Dagh Basin, NE of Iran. Int. J. Emerg. Technol. Adv. Eng. 3(5), 50–56 (2013)Google Scholar
  38. Kilburn, C.R., Petley, D.N.: Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy. Geomorphology 54(1), 21–32 (2003)CrossRefGoogle Scholar
  39. Markland, J.T.: A useful technique for estimating the stability of rock slopes when the rigid wedge sliding type of failure is expected. Imperial College Rock Mechanics Research Report 19 (1972)Google Scholar
  40. Palma, B., et al.:. Rock-fall hazard assessment along a road in the Sorrento Peninsula, Campania, southern Italy. Nat. Hazards 61(1), 187–201 (2012a)Google Scholar
  41. Palma, B., et al.: Analysis of the behaviour of a carbonate rock mass due to tunneling in a karst setting. In: Han, K.C., Park, C., Kim, J.D., Jeon, S., Song, J.J. (eds.) The Present and Future of Rock Engineering. Proceedings of the 7th Asian Rock Mechanics Symposium, Seoul, pp. 772–781 (2012b)Google Scholar
  42. Palmer, A.: Cave Geology, 454 p. Cave Books, Dayton (2007)Google Scholar
  43. Pánek, T., et al.: Time constraints for the evolution of a large slope collapse in karstified mountainous terrain of the southwestern Crimean mountains, Ukraine. Geomorphology 108(3), 171–181 (2009)CrossRefGoogle Scholar
  44. Parise, M.: Rock failures in karst. In: Cheng, Z., Zhang, J., Li, Z., Wu, F., Ho, K. (eds.) Landslides and Engineered Slopes. Proceedings of the 10th International Symposium on Landslides, Xi’an (China), 30 June–4 July 2008, vol. 1, pp. 275–280 (2008)Google Scholar
  45. Parise, M., Pascali, V.: Surface and subsurface environmental degradation in the karst of Apulia (southern Italy). Environ. Geol. 44, 247–256 (2003)CrossRefGoogle Scholar
  46. Parise, M., Gunn, J.: Natural and Anthropogenic Hazards in Karst Areas: Recognition. Analysis and Mitigation. Geological Society, London (2007). sp. publ. 279Google Scholar
  47. Parise, M., Lollino, P.: A preliminary analysis of failure mechanisms in karst and man-made underground caves in Southern Italy. Geomorphology 134, 132–143 (2011)CrossRefGoogle Scholar
  48. Peckover, F.L., Kerr, J.W.G.: Treatment and maintenance of rock slopes on transportation routes. Can. Geotech. J. 14(4), 487–507 (1977)CrossRefGoogle Scholar
  49. Pepe, M., Parise, M.: Structural control on development of karst landscape in the Salento Peninsula (Apulia, SE Italy). Acta Carsologica 43(1), 101–114 (2014)CrossRefGoogle Scholar
  50. Perret, S., et al.: Rockfalls into forests: analysis and simulation of rockfall trajectories - considerations with respect to mountainous forests in Switzerland. Landslides 1(2), 123–130 (2004)CrossRefGoogle Scholar
  51. Prager, C., et al.: Age distribution of fossil landslides in the Tyrol (Austria) and its surrounding areas. Nat. Hazards Earth Syst. Sci. 8, 377–407 (2008)CrossRefGoogle Scholar
  52. Raju, M., et al.: A comprehensive report on Landslide Hazard Zonation of south Mizoram (field season 1997–98). Unpublished report of the Geological Survey of India (GSI), pp. 40–66 (1999)Google Scholar
  53. Santi, P.M.: Improving the jar slake, slake index, and slake durability tests for shales. Environ. Eng. Geosci. 3, 385–396 (1998)CrossRefGoogle Scholar
  54. Santo, A., et al.: Karst processes and slope instability: some investigations in the carbonate Apennine of Campania (southern Italy). Geo. Soc. London Spec. Publ. 279(1), 59–72 (2007)CrossRefGoogle Scholar
  55. Semenza, E., Ghirotti, M.: History of the 1963 Vaiont slide: the importance of geological factors. Bull. Eng. Geol. Env. 59(2), 87–97 (2000)CrossRefGoogle Scholar
  56. Vallejo, L.E.: The influence of notches on the stability of soil and rock slopes. In: Proceedings of the 11th International Symposium on Landslides and Engineered Slopes, Banff, Canada, vol. 1, pp. 415–419 (2012)Google Scholar
  57. Vermeulen, J., Whitten, T.: Biodiversity and Cultural Heritage in the Management of Limestone Resources: Lessons from East Asia. The World Bank, Washington, D.C. (1999)CrossRefGoogle Scholar
  58. Waltham, A.C.: The engineering classification of karst with respect to the role and influence of caves. Int. J. Speleol. 31(1/4), 19–35 (2002)CrossRefGoogle Scholar
  59. Waltham, A.C., et al.: Sinkholes and Subsidence: Karst and Cavernous Rocks in Engineering and Construction. Springer, Berlin (2005)Google Scholar
  60. White, W.B.: Geomorphology and Hydrology of Karst Terrains, 464 pp. Oxford University Press, Oxford (1988)Google Scholar
  61. Williams, P.W.: Karst Terrains: Environmental Changes and Human Impact. Catena Supplement, 25. Cetena, Cremlingen-Destedt, Germany (1993)Google Scholar
  62. Youssef, A.M., et al.: Geomorphological hazards analysis along the Egyptian Red Sea coast between Safaga and Quseir. Nat. Hazards Earth Syst. Sci. 9, 751–766 (2009)CrossRefGoogle Scholar
  63. Youssef, A.M., et al.: Coupling of remote sensing data aided with field investigations for geological hazards assessment in Jazan area, Kingdom of Saudi Arabia. Environ. Earth Sci. 65, 119–130 (2012)CrossRefGoogle Scholar
  64. Youssef, A.M., et al.: Natural and human-induced sinkhole hazards in Saudi Arabia: distribution, investigation, causes and impacts. Hydrogeol. J. 24(3), 625–644 (2016). doi: 10.1007/s10040-015-1336-0 CrossRefGoogle Scholar
  65. Yuan, R.K.S., Mohd, M.I.M.: Integration of remote sensing and GIS techniques for landside applications. In: Proceedings of Asian Conference on Remote Sensing (ACRS) PS397-6 (1997)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ahmed M. Youssef
    • 1
    • 2
    Email author
  • Abdel-Hamid El-Shater
    • 1
  • Mohamed H. El-Khashab
    • 1
  • Bosy A. El-Haddad
    • 1
  1. 1.Geology Department, Faculty of ScienceSohag UniversitySohagEgypt
  2. 2.Geological Hazards DepartmentApplied Geology Sector, Saudi Geological SurveyJeddahKingdom of Saudi Arabia

Personalised recommendations