Skip to main content

Lining Induced Stresses for Mechanized Tunneling Along Curved Alignment

  • Conference paper
  • First Online:
Engineering Challenges for Sustainable Underground Use (GeoMEast 2017)

Abstract

In tunneling projects, determining the tunnel alignment is one of the early decisions in the planning process. The alignment is chosen according to feasibility studies of the project. Usually, a curvature of the alignment is inevitable, especially in urban tunneling when certain locations such as exit points, locations with sensitive surface structures and difficult ground conditions must be a priori considered. Mechanized tunneling presents an effective and widely used construction method, in particular, in soft ground conditions and in presence of ground water. A realistic simulation of mechanized tunneling process requires a reliable numerical model that accounts for the different construction stages and all relevant interactions; between the surrounding soil medium and the shield machine during the machine advancement and between the soil and tunnel linings via the grouting mortar.

The stresses in tunnel linings are influenced by construction conditions, ground conditions, and shield thrust. Tunnel lining design requires a proper estimate of structural forces in linings. The segmental linings in curved zones during advancement require special attention to account for expected extra stresses and to avoid possible cracking.

To predict the stress evolution in lining during tunneling process, a 3D finite element model (ekate) has been developed which is able to simulate the staged mechanized tunneling process along arbitrary curved alignments. In this paper, the structural loading on a curved aligned tunnel lining segments in different construction stages is discussed. The loading on the lining is directly determined from the modelling of all interactions between the installed tunnel linings and the advancing tunnel boring machine with the surrounding soil. The eccentric thrust forces acting on the lining are mechanically considered in the process-oriented simulation model. The aim of this numerical study is to investigate the influence of these complex interactions on the loading and the induced stresses in the tunnel linings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd Elrehim, M.Z., Hassan, A., Asaad, M.: Numerical modelling of TBM segmental lining at accidental cases. J. Am. Sci. 2015 11(5) (2015)

    Google Scholar 

  • Alsahly, A., Gall, V., Marwan, A., Vonthron, A.J.N., König, M., et al.: From building information modeling to real time simulation in mechanized tunnelling: an integrated approach applied to the Wehrhahn-line Düsseldorf (2016)

    Google Scholar 

  • Alsahly, A., Stascheit, J., Meschke, G.: Advanced finite element modeling of excavation and advancement processes in mechanized tunneling. Adv. Eng. Softw. (2016). doi:10.1016/j.advengsoft.2016.07.011

  • Arnau, O., Molins, C.: Three dimensional structural response of segmental tunnel linings. Eng. Struct. (2012). doi:10.1016/j.engstruct.2012.06.001

  • Barták, J., Hrdina, I., Romancov, G., Zalámal, J.: Underground Space – The 4th Dimension of Metropolises (2007). doi:10.1201/noe0415408073

  • Blom, C.B.M., Duurland, H.C.W., Oosterhout, G.P.C., Jovanovic, P.S.: Three-dimensional structural analyses and design of segmented tunnel lining at construction stage. In: Cividini, A. (ed.) Application of Numerical Methods to Geotechnical Problems. ICMS, vol. 397, pp. 87–96. Springer, Vienna (1998). doi:10.1007/978-3-7091-2512-0_8

    Google Scholar 

  • Blome, A.: Die Wehrhahn-Linie – Historie, verkehrliches Konzept und künstlerische Gestaltung. Vergangenheit trifft Zukunft – 50 Jahre STUVA (2010)

    Google Scholar 

  • Dadvand, P., Rossi, R., Oñate, E.: An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch. Comput. Methods Eng. (2010). doi:10.1007/s11831-010-9045-2

  • Do, N.-A., Dias, D., Oreste, P., Djeran-Maigre, I.: Three-dimensional numerical simulation for mechanized tunnelling in soft ground: the influence of the joint pattern. Acta Geotech. (2013). doi:10.1007/s11440-013-0279-7

  • Festa, D., Broere, W., Bosch, J.W.: An investigation into the forces acting on a TBM during driving – Mining the TBM logged data. Tunnel. Undergr. Space Technol. (2012). doi:10.1016/j.tust.2012.06.006

  • FHWA: Technical manual for design and construction of road tunnels — civil elements (2009). Publication No. FHWA-NHI-10-034

    Google Scholar 

  • Guglielmetti, V., Grasso, P., Mahtab, A., Xu, S.: Mechanized Tunnelling in Urban Areas: Design Methodology and Construction Control. Talyor & Francis, Abingdon (2007). ISBN 978-0-415-42010-5

    Book  Google Scholar 

  • Huang, Z., Zhu, W., Liang, J., Lin, J., Jia, R.: Three-dimensional numerical modelling of shield tunnel lining. Tunn. Undergr. Space Technol. (2006). doi:10.1016/j.tust.2005.12.076

  • Huayong, Y., Hu, S., Guofang, G., Guoliang, H.: Electro-hydraulic proportional control of thrust system for shield tunneling machine. Autom. Constr. (2009). doi:10.1016/j.autcon.2009.04.005

  • ITA: Guidelines for the design of shield tunnel lining. Tunn. Undergr. Space Technol. (2000). doi:10.1016/s0886-7798(00)00058-4

  • Johnson, N.: Urban EPB tunneling in limited space: a case study of the San Francisco central subway project. In: Proceedings of the North American Tunneling Conference 2014. Society for Mining, Metallurgy and Exploration (2014). ISBN 978-0-87335-400-4

    Google Scholar 

  • Kasper, T., Meschke, G.: A 3D finite element simulation model for TBM tunnelling in soft ground. Int. J. Numer. Anal. Methods Geomech. (2004). doi:10.1002/nag.395

  • Kasper, T., Meschke, G.: A numerical study of the effect of soil and grout material properties and cover depth in shield tunnelling. Comput. Geotech. (2006a). doi:10.1016/j.compgeo.2006.04.004

  • Kasper, T., Meschke, G.: On the influence of face pressure, grouting pressure and TBM design in soft ground tunnelling. Tunn. Undergr. Space Technol. (2006b). doi:10.1016/j.tust.2005.06.006

  • Katebi, H., Rezaei, A.H., Hajialilue-Bonab, M., Tarifard, A.: Assessment the influence of ground stratification, tunnel and surface buildings specifications on shield tunnel lining loads (by FEM). Tunn. Undergr. Space Technol. (2015). doi:10.1016/j.tust.2015.04.004

  • Klappers, C., Grübl, F., Ostermeier, B.: Structural analyses of segmental lining – coupled beam and spring analyses versus 3D-FEM calculations with shell elements. Tunn. Undergr. Space Technol. (2006). doi:10.1016/j.tust

  • Koyama, Y.: Present status and technology of shield tunneling method in Japan. Tunn. Undergr. Space Technol. (2003). doi:10.1016/s0886-7798(03)00040-3

  • Lambrughi, A., Medina Rodríguez, L., Castellanza, R.: Development and validation of a 3D numerical model for TBM–EPB mechanised excavations. Comput. Geotech. 40, 97–113 (2012). doi:10.1016/j.compgeo.2011.10.004

    Article  Google Scholar 

  • Maidl, B., Herrenknecht, M., Maidl, U., Wehrmeyer, G.: Mechanised Shield Tunnelling. Ernst & Sohn, Berlin (2012). ISBN 978-3-433-02995-4

    Book  Google Scholar 

  • Mashimo, H., Ishimura, T.: Evaluation of the load on shield tunnel lining in gravel. Tunn. Undergr. Space Technol. (2003). doi:10.1016/s0886-7798(03)00032-4

  • Medina Rodríguez, L., Melis Maynar, M.: Numerical analysis of lining ring behaviour during shield tunnelling. In: FLAC and Numerical Modeling in Geomechanics-2001: Proceedings of the 2nd International FLAC Symposium (2001)

    Google Scholar 

  • Medina, L., Melis, M.: A numerical analysis of lining behaviour during shield tunnelling. In: Proceedings of the 28th ITA-AITES World Tunnel Congress (2002)

    Google Scholar 

  • Meschke, G.: Consideration of aging of shotcrete in the context of A 3-D viscoplastic material model. Int. J. Numer. Methods Eng. (1996). doi:10.1002/(SICI)1097-0207(19960930)39:183.3.CO;2-I

  • Meschke, G., Kropik, C., Mang, H.: Numerical analyses of tunnel linings by means of a viscoplastic material model for shotcrete. Int. J. Numer. Methods Eng. (1996). doi:10.1002/(SICI)1097-0207(19960930)39:183.0.CO;2-M

  • Meschke, G., Nagel, F., Stascheit, J.: Computational simulation of mechanized tunneling as part of an integrated decision support platform. Int. J. Geomech. (2011). doi:10.1061/(ASCE)gm.1943-5622.0000044

  • Nagel, F., Stascheit, J., Meschke, G.: Process-oriented numerical simulation of shield-supported tunnelling in soft soils. Geomech. Tunn. (2010). doi:10.1002/geot.201000024

  • Nagel, F., Stascheit, J., Meschke, G., Gens, A., Rodic, T.: Process-oriented numerical simulation of mechanised tunnelling. In: Beer, G. (ed.) Technology Innovations in Underground Construction. Taylor and Francis, Abingdon (2009)

    Google Scholar 

  • Swartz, S., Tzobery, S., Himphill, G., Shamma, J.: Trapezoidal tapered ring—key position selection in curved tunnels. In: Proceeding of the Rapid Excavation and Tunneling Conference 2005. Society for Mining, Metallurgy and Exploration (2005). ISBN 978-0-87335-504-5

    Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by the German Science Foundation (DFG) in the framework of sub-projects C1 of the Collaborative Research Center SFB 837 “Interaction modeling in mechanized tunneling”. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Marwan, A., Alsahly, A., Abd Elrehim, M.Z., Meschke, G. (2018). Lining Induced Stresses for Mechanized Tunneling Along Curved Alignment. In: Agaiby, S., Grasso, P. (eds) Engineering Challenges for Sustainable Underground Use. GeoMEast 2017. Sustainable Civil Infrastructures. Springer, Cham. https://doi.org/10.1007/978-3-319-61636-0_4

Download citation

Publish with us

Policies and ethics