Skip to main content

Hourly Campus Water Demand Forecasting Using a Hybrid EEMD-Elman Neural Network Model

  • Conference paper
Sustainable Development of Water Resources and Hydraulic Engineering in China

Part of the book series: Environmental Earth Sciences ((EESCI))

  • 797 Accesses

Abstract

Accurate and reliable water demand forecasting is important for effective and sustainable planning and use of water supply infrastructures. In this paper, a hybrid EEMD-Elman neural network model for hourly campus water demand forecast is proposed, aiming at improving the accuracy and reliability of water demand forecast. The proposed method combines the Elman neural network, EEMD method, and phase space reconstruction method providing favorable dynamic forecast characteristics and improving the forecasting accuracy and reliability. Simulation results show that the proposed model provides a better performance of hourly campus water demand forecast by using the real data of water usage of our campus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qin, T.L., et al.: Water demand forecast in the Baiyangdian basin with the extensive and low-carbon economic modes. J. Appl. Math. 2014, 1–10 (2014). https://doi.org/10.1155/2014/6734

    Article  Google Scholar 

  2. Beal, C.D.: SEQ residential end use study. J. Aust. Water Assoc. 38(1), 80–84 (2011). https://www.researchgate.net/publication/279662589)

  3. Fielding, K.S., et al.: Using individual householder survey responses to predict household environmental outcomes: the cases of recycling and water conservation. Resour. Conserv. Recycl. 106, 90–97 (2016). https://doi.org/10.1016/j.resconrec.2015.11.009

    Article  Google Scholar 

  4. Shen, J.-C., et al.: Real-time correction of water stage forecast using combination of forecasted errors by time series models and Kalman filter method. Stoch. Env. Res. Risk Assess. 29(7), 1903–1920 (2015). https://doi.org/10.1007/s00477-015-1074-9

    Article  Google Scholar 

  5. Luo, X., Jiaqi Yang, J.: Study on the imbalance of shipping demand and supply of inland water transportation of Yangtze River. ICTIS 2013: Improving Multimodal Transportation Systems-Information, Safety, and Integration, p. 2211–2221 (2013). https://doi.org/10.1061/9780784413036.297

  6. Adamowski, J., Chan, H.-F., Prasher, S.O.: Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Water Res. Res. 48(1) (2012). https://doi.org/10.1029/2010wr009945

  7. Mombeni, H.A., et al.: Estimation of water demand in Iran based on SARIMA models. Environ. Model. Assess. 18(5), 559–565 (2013). https://doi.org/10.1007/s10666-013-9364-4

    Article  Google Scholar 

  8. Braun, M., et al.: 24-hours demand forecasting based on SARIMA and support vector machines. Procedia Eng. 89, 926–933 (2014). https://doi.org/10.1016/j.proeng.2014.11.526

    Article  Google Scholar 

  9. Mombeni, H.A., et al.: Reducing water consumption after targeted subsidy plan in Iran. Water Resour. 42(3), 389–396 (2015). https://doi.org/10.1134/S0097807815030100

    Article  Google Scholar 

  10. Vijayalaksmi, D.P., Jinesh Babu, K.S.: Water supply system demand forecasting using adaptive neuro-fuzzy inference system. Aquat. Procedia 4, 950–956 (2015). https://doi.org/10.1016/j.aqpro.2015.02.119

    Article  Google Scholar 

  11. Candelieri, A., Archetti, F.: Identifying typical urban water demand patterns for a reliable short-term forecasting—the icewater project approach. Procedia Eng. 89, 1004–1012 (2014). https://doi.org/10.1016/j.proeng.2014.11.218

    Article  Google Scholar 

  12. Adamowski, J.F.: Peak daily water demand forecast modeling using artificial neural networks. J. Water Res. Plann. Manage. 134(2), 119–128 (2008). https://doi.org/10.1061/(ASCE)0733-9496(2008)134:2(119)

    Article  Google Scholar 

  13. Bennett, C., Stewart, R.A., Beal, C.D.: ANN-based residential water end-use demand forecasting model. Expert Syst. Appl. 40(4), 1014–1023 (2013). https://doi.org/10.1016/j.eswa.2012.08.012

    Article  Google Scholar 

  14. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986). https://doi.org/10.1038/323533a0

    Article  Google Scholar 

  15. Jia, W., et al.: Study on optimized Elman neural network classification algorithm based on PLS and CA. Comput. Intell. Neurosci. 2014, 724317 (2014). https://doi.org/10.1155/2014/724317

    Article  Google Scholar 

  16. Wu, Z.H., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1(1), 1–41 (2009). https://doi.org/10.1142/S1793536909000047

    Article  Google Scholar 

  17. Wang, J., Zhang, W., Li, Y., Wang, J., Dang, Z.: Forecasting wind speed using empirical mode decomposition and Elman neural network. Appl. Soft Comput. 23, 452–459 (2014). https://doi.org/10.1016/j.asoc.2014.06.027

    Article  Google Scholar 

  18. Lin, C.-M., Boldbaatar, E.-A.: Autolanding control using recurrent wavelet Elman neural network. IEEE Trans. Syst. Man Cybern. Syst. 45(9), 1281–1291 (2015). https://doi.org/10.1109/tsmc.2015.2389752

  19. Kim, H.S., Eykholt, R., Salas, J.D.: Nonlinear dynamics, delay times and embedding windows. Phys. D 127, 48–60 (1999). https://doi.org/10.1016/s0167-2789(98)00240-1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Cite this paper

Deng, X., Hou, S., Li, Wz., Liu, X. (2019). Hourly Campus Water Demand Forecasting Using a Hybrid EEMD-Elman Neural Network Model. In: Dong, W., Lian, Y., Zhang, Y. (eds) Sustainable Development of Water Resources and Hydraulic Engineering in China. Environmental Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-61630-8_7

Download citation

Publish with us

Policies and ethics