A Bibliometric Analysis of Publications on Solar Pumping Irrigation

Conference paper
Part of the Environmental Earth Sciences book series (EESCI)

Abstract

Solar energy is considered as one of the cleanest forms of energy sources. Meanwhile, many studies have used solar power for water pumping, which is an economically attractive solar energy application since the year of 1615. To better understand the history of the development of solar energy irrigation, a bibliometric analysis of publications on solar energy pumping research from 1956 to 2015 in the sci-direct database is presented here. The analysis informs of the growing trends and indicates that “water”, “solar”, and “soil” are hot topics of research on solar energy irrigation during this period. The language of the publications, publication output, journal distribution, countries and territories of these publications, hot topics and highly cited papers have been assessed. The top 10 countries/territories were ranked according to their total number of articles (TA), single country articles (SCA), internationally collaborative articles (ICA) and first author articles (FAA). Meanwhile, the processes of solar energy installations for pumping irrigation water can be divided into three stages, including photo-thermal conversion stage, solar energy-thermal-electric power conversion stage and photovoltaic conversion stage.

Keywords

Solar energy Bibliometric analysis Photovoltaic pumping Irrigation 

Notes

Acknowledgements

This research was financially supported by Hebei Province Department of Education (QN2016261).

References

  1. 1.
    Pytlinski, J.T.: Solar energy installations for pumping irrigation water. Sol. Energy 21, 255–262 (1978).  https://doi.org/10.1016/0038-092x(78)90001-4
  2. 2.
    de Caux, S.: The Cause of Motive Power. E. I. Norton, Frankfurt, Germany (1615)Google Scholar
  3. 3.
    Mouchot, A.B., Solaire, L.C., et al.: Applications Industries. In: Gauther-Villars (ed.) Paris, France (1869)Google Scholar
  4. 4.
    Mouchot, A.B.: Comptes Rendus de l’Acad~mie des Sciences, Paris, France 81, 74 (1875)Google Scholar
  5. 5.
    Mouchot, A.B.: Comptes Rendus de I’Acad~mie des Sciences, Paris, France 86, 132 (1878)Google Scholar
  6. 6.
    Mouchot, A.B.: Comptes Rendus de l’Acad~mie des Sciences, Paris, France 87, 481 (1878)Google Scholar
  7. 7.
    Pifre, A.: A solar printing press. Nature 26, 503–504 (1882)CrossRefGoogle Scholar
  8. 8.
    Langley, S.P.: The New Astronomy, Houghton, Mi-lin, New York, pp. 91–116 (1896)Google Scholar
  9. 9.
    Anon: The utilization of solar heat for the elevation of water. Sci Am. 53(14), 214 (1927)Google Scholar
  10. 10.
    Abbot, C.G.: Smithsonian Miscellaneous Collections 98(5), 1 (1939)CrossRefGoogle Scholar
  11. 11.
    Abbot, C.G.: Ann. Rep. Smithsonian Inst. 99 (1943)Google Scholar
  12. 12.
    Tabor, H., Zeimer, H.: Low-cost focusing collector for solar power units. Sol. Energy 6, 55–59 (1962).  https://doi.org/10.1016/0038-092x(62)90004-xCrossRefGoogle Scholar
  13. 13.
    Francia, G.: Pilot plants of solar steam generating stations. Sol. Energy 12, 51 (1968).  https://doi.org/10.1016/0038-092x(68)90024-8CrossRefGoogle Scholar
  14. 14.
    Bronicki, L.Y.: In: Proceedings of the 7th Intersociety Energy Conversion Conference, San Diego, California, Paper 729057, pp. 327 (1972)Google Scholar
  15. 15.
    McClure, G.M.: In: Proceedings of the Solar Irrigation Workshop, Albuquerque, New Mexico, pp. 28 (1977)Google Scholar
  16. 16.
    Masson, H., Girardier, J.P.: Solar motors with flat-plate collectors. Sol. Energy 10, 165–169 (1966).  https://doi.org/10.1016/0038-092x(66)90003-xCrossRefGoogle Scholar
  17. 17.
    Fenton, D.L., Abernatnv, G.H., Karvokaplch, G.A.: Operation and evaluation of the Willard solar thermal power irrigation system. Sol. Energy 32, 735–751 (1984).  https://doi.org/10.1016/0038-092x(84)90248-2CrossRefGoogle Scholar
  18. 18.
    Moore, R.M.: Cost predictions for photovoltaic energy sources. Sol. Energy 18, 225–234 (1976).  https://doi.org/10.1016/0038-092x(76)90021-9CrossRefGoogle Scholar
  19. 19.
    Sudhakar, K., Muralikrishna, M., Rao, D.P.: Analysis and simulation of a solar water pump for lift irrigation. Sol. Energy 24, 71–82 (1980).  https://doi.org/10.1016/0038-092x(80)90022-5CrossRefGoogle Scholar
  20. 20.
    Karmeli, D., Atkinson, J.F., Todes, M.: Economic feasibility of solar pumping. Sol. Energy 27, 251–260 (1981).  https://doi.org/10.1016/0038-092x(81)90126-2CrossRefGoogle Scholar
  21. 21.
    Howes, M.: The potential for groundwater exploitation by solar-powered pumps in Pakistan. Agric. Adm. 16, 229–248 (1984).  https://doi.org/10.1016/0309-586x(84)90095-5CrossRefGoogle Scholar
  22. 22.
    Ramos, J.S., Ramos, H.M.: Solar powered pumps to supply water for rural or isolated zones: a case study. Energy Sustain. Dev. 13, 151–158 (2009).  https://doi.org/10.1016/j.esd.2009.06.006CrossRefGoogle Scholar
  23. 23.
    Khan, M.T.-U.-I., Pathik, B.B.: A comprehensive study on photovoltaic irrigation system for different crop cultivation: financial evaluation perspective. Electr. Eng. 2, 228–237 (2014).  https://doi.org/10.17265/2328-2223/2014.05.005
  24. 24.
    Hossaina, M.A., Hassan, M.S., Mottalib, M.A., Ahmmed, S.: Technical and economic feasibility of solar pump irrigations for eco-friendly environment. Procedia Eng. 105, 670–678 (2015).  https://doi.org/10.1016/j.proeng.2015.05.047CrossRefGoogle Scholar
  25. 25.
    Chandratilleke, T.T., Ho, J.C.: A study of a photovoltaic array for water pumping. Sol. Wind Technol. 3, 59–71 (1986)CrossRefGoogle Scholar
  26. 26.
    Alajlan, S.A., Smiai, M.S.: Performance and development of PV-plant for water pumping and desalination for remote area in Saudi Arabia. WREC 441–446 (1996).  https://doi.org/10.1016/0960-1481(96)88895-1
  27. 27.
    Bennouna, A., Ijdiyaou, Y.: Water pumping using a photovoltaic D.C. solar pump without energy storage. Renew. Energy 4, 847–854 (1994).  https://doi.org/10.1016/0960-1481(94)90237-2CrossRefGoogle Scholar
  28. 28.
    Amer, E.H., Younes, M.A.: Estimating the monthly discharge of a photovoltaic water pumping system: model verification. Energy Convers. Manag. 47, 2092–2102 (2006).  https://doi.org/10.1016/j.enconman.2005.12.001CrossRefGoogle Scholar
  29. 29.
    Al-Ali, A.R., Rehman, S., Al-Agili, S., et al.: Usage of photovoltaics in an automated irrigation system. Renew. Energy 23, 17–26 (2001).  https://doi.org/10.1016/s0960-1481(00)00110-5CrossRefGoogle Scholar
  30. 30.
    Cuadros, F., López-Rodríguez, F., Marcosb, A., et al.: A procedure to size solar-powered irrigation (photo-irrigation) schemes. Sol. Energy 76, 465–473 (2004).  https://doi.org/10.1016/j.solener.2003.08.040CrossRefGoogle Scholar
  31. 31.
    Fedrizz, M.C., Sauer, I.L., Zilles, R.: Economic analysis of photovoltaic and gasoline pumping systems. WREC 424–427 (1996).  https://doi.org/10.1016/0960-1481(96)88891-4
  32. 32.
    Odeh, I., Yohanis, Y.G., Norton, B.: Economic viability of photovoltaic water pumping systems. Sol. Energy 80, 850–860 (2006).  https://doi.org/10.1016/j.solener.2005.05.008CrossRefGoogle Scholar
  33. 33.
    Campana, P.E., Leduc, S., Kim, M., et al.: Optimal grassland locations for sustainable photovoltaic water pumping systems in China. Energy Procedia 75, 301–307 (2015).  https://doi.org/10.1016/j.egypro.2015.07.355CrossRefGoogle Scholar
  34. 34.
    Pulfrey, D.L., Ward, P.R.B., Dunford, W.G.: A photovoltaic-powered system for medium head pumping. Sol. Energy 38, 255–265 (1987).  https://doi.org/10.1016/0038-092x(87)90047-8CrossRefGoogle Scholar
  35. 35.
    Mustafizul Karim, A.N., Rahman, M.M.: Cost-effective analysis on the suitability of photovoltaic pumping systems in Bangladesh. Sol. Energy Mater. Sol. Cells 30, 177–188 (1993).  https://doi.org/10.1016/0927-0248(93)90019-yCrossRefGoogle Scholar
  36. 36.
    Hamidat, A., Benyoucef, B., Hartani, T.: Small-scale irrigation with photovoltaic water pumping system in Sahara regions. Renew. Energy 28, 1081–1096 (2003).  https://doi.org/10.1016/S0960-1481(02),00058-7CrossRefGoogle Scholar
  37. 37.
    Mahmoud, E., el Nather, H.: Renewable energy and sustainable developments in Egypt: photovoltaic water pumping in remote areas. Appl. Energy 74, 141–147 (2003).  https://doi.org/10.1016/S0306-2619(02)00140-XCrossRefGoogle Scholar
  38. 38.
    Roy, A., Kabir, M.A.: Relative life cycle economic analysis of stand-alone solar PV and fossil fuel powered systems in Bangladesh with regard to load demand and market controlling factors. Renew. Sustain. Energy Rev. 16, 4629–4637 (2012).  https://doi.org/10.1016/j.rser.2012.03.068CrossRefGoogle Scholar
  39. 39.
    Benghanem, M., Daffallah, K.O., Alamri, S.N., Joraid, A.A.: Effect of pumping head on solar water pumping system. Energy Convers. Manag. 77, 334–339 (2014).  https://doi.org/10.1016/j.enconman.2013.09.043CrossRefGoogle Scholar
  40. 40.
    Fraidenraich, N., Costa, H.S.: Procedure for the determination of the maximum surface which can be irrigated by a photovoltaic pumping system. Sol. Wind Technol. 5, 121–126 (1988).  https://doi.org/10.1016/0741-983X(88),90069-0CrossRefGoogle Scholar
  41. 41.
    Al-sagir, B.E., Hasson, A.M.: A procedure for minimizing the photovoltaic pumping system in irrigation and leaching applications in the Baghdad area. Sol. Wind Technol. 7, 13–145 (1990).  https://doi.org/10.1016/0741-983X(90)90081-CCrossRefGoogle Scholar
  42. 42.
    Ghoneim, A.A.: Design optimization of photovoltaic powered water pumping systems. Energy Convers. Manag. 47, 1449–1463 (2006).  https://doi.org/10.1016/j.enconman.2005.08.015CrossRefGoogle Scholar
  43. 43.
    Bakelli, Y., Arab, A.H., Azoui, B.: Optimal sizing of photovoltaic pumping system with water tank storage using LPSP concept. Sol. Energy. 85, 288–294 (2011).  https://doi.org/10.1016/j.solener.2010.11.023CrossRefGoogle Scholar
  44. 44.
    Stoppato, A., Cavazzini, G., Ardizzon, G., Rossetti, A.: A PSO (particle swarm optimization)-based model for the optimal management of a small PV (Photovoltaic)-pump hydro energy storage in a rural dry area. Energy 76, 168–174 (2014).  https://doi.org/10.1016/j.energy.2014.06.004CrossRefGoogle Scholar
  45. 45.
    Haddad, S., Benghanem, M., Mellit, A., Daffallah, K.O.: ANNs-based modeling and prediction of hourly flow rate of a photovoltaic water pumping system: experimental validation. Renew. Sustain. Energy Rev. 43, 635–643 (2015).  https://doi.org/10.1016/j.rser.2014.11.083CrossRefGoogle Scholar
  46. 46.
    Campana, P.E., Li, H., Zhang, J., Zhang, R., Liu, J., Yan, J.: Economic optimization of photovoltaic water pumping systems for irrigation. Energy Convers. Manag. 95, 32–41 (2015).  https://doi.org/10.1016/j.enconman.2015.01.066CrossRefGoogle Scholar
  47. 47.
    Olcan, C.: Multi-objective analytical model for optimal sizing of stand-alone photovoltaic water pumping systems. Energy Convers. Manag. 100, 358–369 (2015).  https://doi.org/10.1016/j.enconman.2015.05.018CrossRefGoogle Scholar
  48. 48.
    Glasnovic, Z., Margeta, J.: A model for optimal sizing of photovoltaic irrigation water pumping systems. Sol. Energy 81, 904–916 (2007).  https://doi.org/10.1016/j.solener.2006.11.003CrossRefGoogle Scholar
  49. 49.
    Hamidat, A., Benyoucef, B.: Systematic procedures for sizing photovoltaic pumping system, using water tank storage. Energy Policy 37, 1489–1501 (2009).  https://doi.org/10.1016/j.enpol.2008.12.014CrossRefGoogle Scholar
  50. 50.
    Kaldellis, J.K., Zafirakis, D., Kondili, E.: Energy pay-back period analysis of stand-alone photovoltaic systems. Renew. Energy 35, 1444–1454 (2010).  https://doi.org/10.1016/j.renene.2009.12.016CrossRefGoogle Scholar
  51. 51.
    Qoaider, L., Steinbrecht, D.: Photovoltaic systems: a cost competitive option to supply energy to off-grid agricultural communities in arid regions. Appl. Energy 87, 427–435 (2010).  https://doi.org/10.1016/j.apenergy.2009.06.012CrossRefGoogle Scholar
  52. 52.
    Kelley, L.C., Gilbertson, E., Sheikh, A., et al.: On the feasibility of solar-powered irrigation. Renew. Sustain. Energy Rev. 14, 2669–2682 (2010).  https://doi.org/10.1016/j.rser.2010.07.061CrossRefGoogle Scholar
  53. 53.
    Xu, H., Liu, J., Qin, D., Gao, X., Yan, J.: Feasibility analysis of solar irrigation system for pastures conservation in a demonstration area in inner Mongolia. Appl. Energy 112, 697–702 (2013).  https://doi.org/10.1016/j.apenergy.2013.01.011CrossRefGoogle Scholar
  54. 54.
    Zhang, C., Yan, J.: Business model innovation on the photovoltaic water pumping systems for grassland and farmland conservation in China. ICAE2014, 1483–1486 (2014).  https://doi.org/10.1016/j.egypro.2014.12.152CrossRefGoogle Scholar
  55. 55.
    López-Luque, R., Reca, J., Martínez, J.: Optimal design of a standalone direct pumping photovoltaic system for deficit irrigation of olive orchards. Appl. Energy 149, 13–23 (2015).  https://doi.org/10.1016/j.apenergy.2015.03.107CrossRefGoogle Scholar
  56. 56.
  57. 57.
    Bahador, M.: Solar water pumping. Sol. Energy 21, 307–316 (1978)CrossRefGoogle Scholar
  58. 58.
    Aman, M.M., Solangi, K.H., Hossain, M.S., et al.: A review of safety, health and environmental (SHE) issues of solar energy system. Renew. Sustain. Energy Rev. 41, 1190–1204 (2015).  https://doi.org/10.1016/j.rser.2014.08.086CrossRefGoogle Scholar
  59. 59.
    Malarvizhi, R., Wang, M.H., Ho, Y.S.: Research trends in adsorption technologies for dye containing wastewaters. World Appl. Sci. J. 8, 930–942 (2010)Google Scholar
  60. 60.
    Yu, J.J., Wang, M.H., Xu, M., et al.: A bibliometric analysis of research papers published on photosynthesis: 1992–2009. Photosynthetica 50, 5–14 (2012).  https://doi.org/10.1007/s10099-012-0010-1CrossRefGoogle Scholar
  61. 61.
    Zhang, G.F., Xie, S.D., Ho, Y.S.: A bibliometric analysis of world volatile organic compounds research trends. Scientometrics 83, 477–492 (2010).  https://doi.org/10.1007/s11192-009-0065-3CrossRefGoogle Scholar
  62. 62.
    Herwitz, S.R., Johnson, L.F., Dunagan, S.E., et al.: Imaging from an unmanned aerial vehicle: agricultural surveillance and decision support. Comput. Electron. Agric. 44, 49–61 (2004).  https://doi.org/10.1016/j.compag.2004.02.006CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Irrigation and DrainageChina Institute of Water Resources and Hydropower ResearchBeijingChina
  2. 2.College of Conservancy and HydropowerHebei University of EngineeringHandanChina
  3. 3.School of Water Conservancy and HydropowerHebei University of EngineeringHandanChina
  4. 4.Linxi Experimental Irrigation Station, Xingtai Water BureauXingtaiChina

Personalised recommendations