A Bibliometric Analysis of Publications on Solar Pumping Irrigation

  • Yunxin ZhangEmail author
  • Zhanyi Gao
  • Yan lei Jia
Part of the Environmental Earth Sciences book series (EESCI)


Solar energy is considered as one of the cleanest forms of energy sources. Meanwhile, many studies have used solar power for water pumping, which is an economically attractive solar energy application since the year of 1615. To better understand the history of the development of solar energy irrigation, a bibliometric analysis of publications on solar energy pumping research from 1956 to 2015 in the sci-direct database is presented here. The analysis informs of the growing trends and indicates that “water”, “solar”, and “soil” are hot topics of research on solar energy irrigation during this period. The language of the publications, publication output, journal distribution, countries and territories of these publications, hot topics and highly cited papers have been assessed. The top 10 countries/territories were ranked according to their total number of articles (TA), single country articles (SCA), internationally collaborative articles (ICA) and first author articles (FAA). Meanwhile, the processes of solar energy installations for pumping irrigation water can be divided into three stages, including photo-thermal conversion stage, solar energy-thermal-electric power conversion stage and photovoltaic conversion stage.


Solar energy Bibliometric analysis Photovoltaic pumping Irrigation 



This research was financially supported by Hebei Province Department of Education (QN2016261).


  1. 1.
    Pytlinski, J.T.: Solar energy installations for pumping irrigation water. Sol. Energy 21, 255–262 (1978).
  2. 2.
    de Caux, S.: The Cause of Motive Power. E. I. Norton, Frankfurt, Germany (1615)Google Scholar
  3. 3.
    Mouchot, A.B., Solaire, L.C., et al.: Applications Industries. In: Gauther-Villars (ed.) Paris, France (1869)Google Scholar
  4. 4.
    Mouchot, A.B.: Comptes Rendus de l’Acad~mie des Sciences, Paris, France 81, 74 (1875)Google Scholar
  5. 5.
    Mouchot, A.B.: Comptes Rendus de I’Acad~mie des Sciences, Paris, France 86, 132 (1878)Google Scholar
  6. 6.
    Mouchot, A.B.: Comptes Rendus de l’Acad~mie des Sciences, Paris, France 87, 481 (1878)Google Scholar
  7. 7.
    Pifre, A.: A solar printing press. Nature 26, 503–504 (1882)CrossRefGoogle Scholar
  8. 8.
    Langley, S.P.: The New Astronomy, Houghton, Mi-lin, New York, pp. 91–116 (1896)Google Scholar
  9. 9.
    Anon: The utilization of solar heat for the elevation of water. Sci Am. 53(14), 214 (1927)Google Scholar
  10. 10.
    Abbot, C.G.: Smithsonian Miscellaneous Collections 98(5), 1 (1939)Google Scholar
  11. 11.
    Abbot, C.G.: Ann. Rep. Smithsonian Inst. 99 (1943)Google Scholar
  12. 12.
    Tabor, H., Zeimer, H.: Low-cost focusing collector for solar power units. Sol. Energy 6, 55–59 (1962).
  13. 13.
    Francia, G.: Pilot plants of solar steam generating stations. Sol. Energy 12, 51 (1968).
  14. 14.
    Bronicki, L.Y.: In: Proceedings of the 7th Intersociety Energy Conversion Conference, San Diego, California, Paper 729057, pp. 327 (1972)Google Scholar
  15. 15.
    McClure, G.M.: In: Proceedings of the Solar Irrigation Workshop, Albuquerque, New Mexico, pp. 28 (1977)Google Scholar
  16. 16.
    Masson, H., Girardier, J.P.: Solar motors with flat-plate collectors. Sol. Energy 10, 165–169 (1966).
  17. 17.
    Fenton, D.L., Abernatnv, G.H., Karvokaplch, G.A.: Operation and evaluation of the Willard solar thermal power irrigation system. Sol. Energy 32, 735–751 (1984).
  18. 18.
    Moore, R.M.: Cost predictions for photovoltaic energy sources. Sol. Energy 18, 225–234 (1976).
  19. 19.
    Sudhakar, K., Muralikrishna, M., Rao, D.P.: Analysis and simulation of a solar water pump for lift irrigation. Sol. Energy 24, 71–82 (1980).
  20. 20.
    Karmeli, D., Atkinson, J.F., Todes, M.: Economic feasibility of solar pumping. Sol. Energy 27, 251–260 (1981).
  21. 21.
    Howes, M.: The potential for groundwater exploitation by solar-powered pumps in Pakistan. Agric. Adm. 16, 229–248 (1984).
  22. 22.
    Ramos, J.S., Ramos, H.M.: Solar powered pumps to supply water for rural or isolated zones: a case study. Energy Sustain. Dev. 13, 151–158 (2009).
  23. 23.
    Khan, M.T.-U.-I., Pathik, B.B.: A comprehensive study on photovoltaic irrigation system for different crop cultivation: financial evaluation perspective. Electr. Eng. 2, 228–237 (2014).
  24. 24.
    Hossaina, M.A., Hassan, M.S., Mottalib, M.A., Ahmmed, S.: Technical and economic feasibility of solar pump irrigations for eco-friendly environment. Procedia Eng. 105, 670–678 (2015).
  25. 25.
    Chandratilleke, T.T., Ho, J.C.: A study of a photovoltaic array for water pumping. Sol. Wind Technol. 3, 59–71 (1986)CrossRefGoogle Scholar
  26. 26.
    Alajlan, S.A., Smiai, M.S.: Performance and development of PV-plant for water pumping and desalination for remote area in Saudi Arabia. WREC 441–446 (1996).
  27. 27.
    Bennouna, A., Ijdiyaou, Y.: Water pumping using a photovoltaic D.C. solar pump without energy storage. Renew. Energy 4, 847–854 (1994).
  28. 28.
    Amer, E.H., Younes, M.A.: Estimating the monthly discharge of a photovoltaic water pumping system: model verification. Energy Convers. Manag. 47, 2092–2102 (2006).
  29. 29.
    Al-Ali, A.R., Rehman, S., Al-Agili, S., et al.: Usage of photovoltaics in an automated irrigation system. Renew. Energy 23, 17–26 (2001).
  30. 30.
    Cuadros, F., López-Rodríguez, F., Marcosb, A., et al.: A procedure to size solar-powered irrigation (photo-irrigation) schemes. Sol. Energy 76, 465–473 (2004).
  31. 31.
    Fedrizz, M.C., Sauer, I.L., Zilles, R.: Economic analysis of photovoltaic and gasoline pumping systems. WREC 424–427 (1996).
  32. 32.
    Odeh, I., Yohanis, Y.G., Norton, B.: Economic viability of photovoltaic water pumping systems. Sol. Energy 80, 850–860 (2006).
  33. 33.
    Campana, P.E., Leduc, S., Kim, M., et al.: Optimal grassland locations for sustainable photovoltaic water pumping systems in China. Energy Procedia 75, 301–307 (2015).
  34. 34.
    Pulfrey, D.L., Ward, P.R.B., Dunford, W.G.: A photovoltaic-powered system for medium head pumping. Sol. Energy 38, 255–265 (1987).
  35. 35.
    Mustafizul Karim, A.N., Rahman, M.M.: Cost-effective analysis on the suitability of photovoltaic pumping systems in Bangladesh. Sol. Energy Mater. Sol. Cells 30, 177–188 (1993).
  36. 36.
    Hamidat, A., Benyoucef, B., Hartani, T.: Small-scale irrigation with photovoltaic water pumping system in Sahara regions. Renew. Energy 28, 1081–1096 (2003).,00058-7CrossRefGoogle Scholar
  37. 37.
    Mahmoud, E., el Nather, H.: Renewable energy and sustainable developments in Egypt: photovoltaic water pumping in remote areas. Appl. Energy 74, 141–147 (2003). Scholar
  38. 38.
    Roy, A., Kabir, M.A.: Relative life cycle economic analysis of stand-alone solar PV and fossil fuel powered systems in Bangladesh with regard to load demand and market controlling factors. Renew. Sustain. Energy Rev. 16, 4629–4637 (2012). Scholar
  39. 39.
    Benghanem, M., Daffallah, K.O., Alamri, S.N., Joraid, A.A.: Effect of pumping head on solar water pumping system. Energy Convers. Manag. 77, 334–339 (2014). Scholar
  40. 40.
    Fraidenraich, N., Costa, H.S.: Procedure for the determination of the maximum surface which can be irrigated by a photovoltaic pumping system. Sol. Wind Technol. 5, 121–126 (1988).,90069-0CrossRefGoogle Scholar
  41. 41.
    Al-sagir, B.E., Hasson, A.M.: A procedure for minimizing the photovoltaic pumping system in irrigation and leaching applications in the Baghdad area. Sol. Wind Technol. 7, 13–145 (1990). Scholar
  42. 42.
    Ghoneim, A.A.: Design optimization of photovoltaic powered water pumping systems. Energy Convers. Manag. 47, 1449–1463 (2006). Scholar
  43. 43.
    Bakelli, Y., Arab, A.H., Azoui, B.: Optimal sizing of photovoltaic pumping system with water tank storage using LPSP concept. Sol. Energy. 85, 288–294 (2011).
  44. 44.
    Stoppato, A., Cavazzini, G., Ardizzon, G., Rossetti, A.: A PSO (particle swarm optimization)-based model for the optimal management of a small PV (Photovoltaic)-pump hydro energy storage in a rural dry area. Energy 76, 168–174 (2014). Scholar
  45. 45.
    Haddad, S., Benghanem, M., Mellit, A., Daffallah, K.O.: ANNs-based modeling and prediction of hourly flow rate of a photovoltaic water pumping system: experimental validation. Renew. Sustain. Energy Rev. 43, 635–643 (2015). Scholar
  46. 46.
    Campana, P.E., Li, H., Zhang, J., Zhang, R., Liu, J., Yan, J.: Economic optimization of photovoltaic water pumping systems for irrigation. Energy Convers. Manag. 95, 32–41 (2015). Scholar
  47. 47.
    Olcan, C.: Multi-objective analytical model for optimal sizing of stand-alone photovoltaic water pumping systems. Energy Convers. Manag. 100, 358–369 (2015). Scholar
  48. 48.
    Glasnovic, Z., Margeta, J.: A model for optimal sizing of photovoltaic irrigation water pumping systems. Sol. Energy 81, 904–916 (2007). Scholar
  49. 49.
    Hamidat, A., Benyoucef, B.: Systematic procedures for sizing photovoltaic pumping system, using water tank storage. Energy Policy 37, 1489–1501 (2009). Scholar
  50. 50.
    Kaldellis, J.K., Zafirakis, D., Kondili, E.: Energy pay-back period analysis of stand-alone photovoltaic systems. Renew. Energy 35, 1444–1454 (2010). Scholar
  51. 51.
    Qoaider, L., Steinbrecht, D.: Photovoltaic systems: a cost competitive option to supply energy to off-grid agricultural communities in arid regions. Appl. Energy 87, 427–435 (2010). Scholar
  52. 52.
    Kelley, L.C., Gilbertson, E., Sheikh, A., et al.: On the feasibility of solar-powered irrigation. Renew. Sustain. Energy Rev. 14, 2669–2682 (2010).
  53. 53.
    Xu, H., Liu, J., Qin, D., Gao, X., Yan, J.: Feasibility analysis of solar irrigation system for pastures conservation in a demonstration area in inner Mongolia. Appl. Energy 112, 697–702 (2013). Scholar
  54. 54.
    Zhang, C., Yan, J.: Business model innovation on the photovoltaic water pumping systems for grassland and farmland conservation in China. ICAE2014, 1483–1486 (2014).
  55. 55.
    López-Luque, R., Reca, J., Martínez, J.: Optimal design of a standalone direct pumping photovoltaic system for deficit irrigation of olive orchards. Appl. Energy 149, 13–23 (2015). Scholar
  56. 56.
  57. 57.
    Bahador, M.: Solar water pumping. Sol. Energy 21, 307–316 (1978)CrossRefGoogle Scholar
  58. 58.
    Aman, M.M., Solangi, K.H., Hossain, M.S., et al.: A review of safety, health and environmental (SHE) issues of solar energy system. Renew. Sustain. Energy Rev. 41, 1190–1204 (2015). Scholar
  59. 59.
    Malarvizhi, R., Wang, M.H., Ho, Y.S.: Research trends in adsorption technologies for dye containing wastewaters. World Appl. Sci. J. 8, 930–942 (2010)Google Scholar
  60. 60.
    Yu, J.J., Wang, M.H., Xu, M., et al.: A bibliometric analysis of research papers published on photosynthesis: 1992–2009. Photosynthetica 50, 5–14 (2012). Scholar
  61. 61.
    Zhang, G.F., Xie, S.D., Ho, Y.S.: A bibliometric analysis of world volatile organic compounds research trends. Scientometrics 83, 477–492 (2010). Scholar
  62. 62.
    Herwitz, S.R., Johnson, L.F., Dunagan, S.E., et al.: Imaging from an unmanned aerial vehicle: agricultural surveillance and decision support. Comput. Electron. Agric. 44, 49–61 (2004).

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Irrigation and DrainageChina Institute of Water Resources and Hydropower ResearchBeijingChina
  2. 2.College of Conservancy and HydropowerHebei University of EngineeringHandanChina
  3. 3.School of Water Conservancy and HydropowerHebei University of EngineeringHandanChina
  4. 4.Linxi Experimental Irrigation Station, Xingtai Water BureauXingtaiChina

Personalised recommendations