Effect of Physico-Chemical Treatment on the Mechanical Properties of Dredged Sediment

  • Maghnia Asmahane BourabahEmail author
  • Said Taibi
Conference paper
Part of the Sustainable Civil Infrastructures book series (SUCI)


In Algeria, the siltation phenomenon affects all dams. Million cubic meters of sediments are deposited annually. A research program is developed for a rational use of dredged sediments.

This study aims to develop sediment management methodology and valorization of dredged materials in western region of Algeria. Experimental results are presented for the exploitation of dredged sediments and its potential uses as a new material resource for road engineering. The goal is to provide formulations economically competitive and easy to implement in situ.

The paper is composed of two parts. The first one presents the geotechnical characteristics of the dredged sediment. The second provides an analysis of the experimental results and discusses the influence of physico-chemical treatment composed of a size particle correction and treatment with binders on the compaction properties and bearing capacity of the material as well as its durability.

The results analysis show that the addition of lime influences the plasticity of material which is clearly decreases (55%). An improvement of the dry density is also observed (25%), which indicating an acceptable level of compactness.

The bearing capacity indices are significantly improved after treatment and continue to increase with lower water contents. The values of bearing capacity are ranging from 34–42%, acceptable values according to the technical guide (IIBCR > 25%), and sufficient to use in the pavement layers.

The compressive strength increases with the curing time or a significant increase appears for the lime treated sediment from a cure period of 28 days and the minimal strength criterion (1 MPa) set by the technical guide to allow trafficability on the treated layers is reached before seven days of curing time. This increasing of the curing time also improves the elastic modulus which indicated that the curing time affected the compressive strength and elastic modulus.


  1. Adejumo, T.E.: Effect of organic content on compaction and consolidation characteristics of Lagos organic clay. Electron. J. Geotechn. Eng. (EJGE) 17, 2201–2211 (2012)Google Scholar
  2. Asgari, M.R., et al.: Experimental study on stabilization of a low plasticity clayey soil with cement/lime. Arab. J. Geosci. (2015). doi: 10.1007/s12517-013-1173-1. SpringerGoogle Scholar
  3. Basson, G.: Sedimentation and sustainable use of reservoirs and river systems. In: International Commission on Large Dams (ICOLD), Bulletin (2010)Google Scholar
  4. Bell, F.G.: Lime stabilization of clay minerals and soils. Eng. Geol. (1996). doi: 10.1016/0013-7952(96)00028-2. ElsevierGoogle Scholar
  5. Bensafia, D., Remini, B.: Le rôle de la vase dans l’accélération de l’eutrophisation des eaux de barrages. Etude expérimentale. Larhyss J. 19, 161–181 (2014)Google Scholar
  6. Bourabah, M.A.: Comportement mécanique des sols fins. Application à la valorisation des sédiments de barrages en technique routière. Thèse de Doctorat, Université de Tlemcen, Algérie (2012)Google Scholar
  7. Boutouil, M., Levacher, D.: Etude expérimentale de la solidification d’une vase de dragage à base de ciments: Evaluation de la porosité et de la structure poreuse après solidification (Experimental study of cement-based solidification of dredged sludge: assessment of the porosity and pore structure after solidification). Mater. Struct./Matériaux et Const. (2001). doi: 10.1007/BF02480510. SpringerGoogle Scholar
  8. Boutouil, M., Saussaye, L.: Influence of granulometric corrector on the properties of the sediments treated with hydraulic binders. Revue Paralia, Editions Paralia CFL (2011). doi: 10.5150/revue-paralia.2011.008
  9. Dermatas, D. et al.: Geotechnical properties of cement treated dredged sediment to be used as transportation fill. In: Garbaciak Jr., S. (ed.) Proceedings of Dredging 2002, Key Technologies for Global Prosperity. ASCE, New York (2003)Google Scholar
  10. Dubois, V.: Etude du comportement physico-mécanique et caractérisation environnementale des sédiments marins-Valorisation en technique routière. Thèse de doctorat, Ecole Nationale Supérieure des Mines de Douai, France (2006)Google Scholar
  11. GTR: Guide technique pour la réalisation des remblais et des couches de forme, fascicules 1, principes généraux (Technical Guide for the realization of embankments and subgrades, fascicles 1 General Principles), LCPC-SETRA (2000)Google Scholar
  12. GTS: Traitement des sols à la chaux et/ou aux liants hydrauliques en remblai et en couche de forme, Guide technique (Treatment of soils with lime and/or hydraulic binders embankment and subgrade, Technical Guide), LCPC-SETRA (2000)Google Scholar
  13. Labiod, Z., et al.: Auscultation des barrages en Algérie (Auscultation of dams in Algeria). In: Séminaire National de Génie Civil SNGC 2001 (2001)Google Scholar
  14. Lahlou, A.: Environmental and socio-economic impacts of erosion and sedimentation in North Africa. In: Erosion and Sediment Yield: Global and Regional Perspectives, Proceedings of the Exeter Symposium. IAHS Publ. No. 236 (1996)Google Scholar
  15. Lasledj, A., Al-Mukhtar, M.: Effect of hydrated lime on the engineering behaviour and the microstructure of highly expansive clay. In: The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India (2008)Google Scholar
  16. Le Guern, M., et al.: Geotechnical and mechanical characterisation of three marine dredged sediments treated with hydraulic binders. In: Proceedings of the South Baltic Conference on Dredged Materials in Dike Construction, Rostock, Germany (2014)Google Scholar
  17. Levacher, D., et al.: A civil engineering application in sediment management: A confined embankment in Cherbourg harbour. XIIèmes Journées Nationales Génie Côtier-Génie Civil, Cherbourg, France, Editions Paralia CFL (2012). doi: 10.5150/jngcgc.2012.114-L
  18. NF P 18-418: Concrete - Sonic auscultation - Measurement of the sonic wave transmission time in concrete. Association Française de Normalisation, France (1989)Google Scholar
  19. NF P 94-078: Soils: investigation and tests - CBR after immersion - Immediate CBR - Immediate bearing ratio - Measurement on sample compacted in CBR mould. Association Française de Normalisation, France (1997)Google Scholar
  20. NF P 98 114-3: Roadway foundations - Methodology for laboratory study of materials treated with hydraulic binders - Part 3: Soils treated with hydraulic binders possibly combined with lime. Association Française de Normalisation, France (2001)Google Scholar
  21. NF P 98-230-2: Test relating to pavements - Preparation of materials bound with cementitious binders or aggregates mixes - Part 2: Preparation by static compression of sands or fine grained soils specimens. Association Française de Normalisation, France (1993)Google Scholar
  22. NF P 98-232-1: Tests relating to pavements - Determination of the mechanical characteristics material bound with hydraulic binders - Part 1: Unconfined compression test on aggregate. Association Française de Normalisation, France (1991)Google Scholar
  23. Nor Zurairahetty, M.Y. et al.: Performance of lime-treated marine clay on strength and compressibility characteristics. Int. J. Geomate Jpn. Geotech. Const. Mat. Env., 2186–2990 (2015). ISSN: 2186-2982(P)Google Scholar
  24. Ola, S.A.: The potentials of lime stabilization of lateritic soils. Eng. Geol. (1977). doi: 10.1016/0013-7952(77)90036-9. ElsevierGoogle Scholar
  25. Predis: Améliorer la valorisation des déchets industriels en BTP. Guide Technique Régional Relatif à la méthodologie de gestion des sédiments de dragage portuaire (Improve the recycling of industrial waste in construction. Regional Technical Guide Related to the methodology of port dredging sediments management). Démarche PREDIS Nord Pas de Calais, Groupe de travail no. 5, Ecole des Mines de Douai, Université Sherbrooke, Université D’artois (2007)Google Scholar
  26. Sfar Felfoul, H., et al.: Traitement des sols à la chaux et au ciment en technique routière tunisienne: présentation d’un exemple. Séminaire International de Géomatériaux, M’sila, Algérie (2003)Google Scholar
  27. Song, Y.S., et al.: Investigation of solid waste soil as road construction material. Environ. Geol. (2003). doi: 10.1007/s00254-002-0746-1. SpringerGoogle Scholar
  28. Thiyyakkandi, S., Annex, S.: Effect of organic content on geotechnical properties of Kuttanad clay. Electron. J. Geotechn. Eng. (EJGE) 16, 1653–1663 (2011)Google Scholar
  29. Wang, D., et al.: Effect of lime treatment on geotechnical properties of Dunkirk sediments in France. Road Mater. Pavement Des. (2013). doi: 10.1080/14680629.2012.755935. Taylor & Francis OnlineGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Laboratoire Eau et Ouvrages dans leur Environnement EOLEUniversité de TlemcenTlemcenAlgérie
  2. 2.Laboratoire Ondes et Milieux Complexes LOMC, UMR 6294 CNRSUniversité du HavreLe HavreFrance

Personalised recommendations