Advertisement

Compaction Properties of Municipal Solid Waste

  • F. N. OkontaEmail author
  • N. Ngcobo
  • M. Mtsweni
  • D. Harris
Conference paper
Part of the Sustainable Civil Infrastructures book series (SUCI)

Abstract

Waste compaction decrease insitu waste void, improve landfill stability and extend landfill life. Recently buried waste was excavated from two large pits in Johannesburg Robinson Deep Landfill site. The compaction characteristics such as optimum moisture content (womc), compaction effort (Ce) and maximum dry density (γmdd) of the bulk and reconstituted waste mass were investigated in the laboratory. Compaction effort ranging from 5 layers and 35 blows per layer to 5 layers and 175 blow per layer of as received and reconstituted samples was investigated. The result of series of modified proctor effort revealed that the density of waste mass is dependent on the relative constitution of organics and plastics. Waste mass constituted of 50% of organics, the maximum. Maximum density of waste mass decreased with percentage of plastic and waste mass constituted of 20% plastics was not compactible. The maximum dry unit weight of as received waste was dependent on the precompaction moisture content. The maximum dry unit weight of initially soaked was greater than that of the initially dried waste mass. The reproducibility of specific gravity of the compacted waste mass was dependent on specimen mass and test results which were determined by the use of waste specimens that were are less than 200 g was not reproducible. The relationship between density and compaction effort (KN.m/m3) was nonlinear with R2 = 0.9196, for the range of 35 blow/layer [44 KN.m/m3] and 175 blows/layer [222.04 KN.m/m3], and can provide good estimate of field parameters of compaction plant in relation to number of passes.

Keywords

Domestic waste Compaction Dry density Insitu bulk unit weight Dry unit weight Compaction effort Reconstituted waste mass Specific gravity Maximum dry density Optimum moisture content Degree of saturation Moisture content 

References

  1. Coduto, D.: Geotechnical Engineering: Principles and Practices, 5th edn. Prentice Hall Inc, Upper Saddle River (2011)Google Scholar
  2. Dixon, N., Jones, D.R.V.: Stress states in, and stiffness of, landfill waste. In: Geotechnical Engineering of Landfills, pp. 19–34. Thomas Telford, London (1998)Google Scholar
  3. Dixon, H., Ng’ambi, S.C., Jones, D.R.V., Connell, A.K.: The role of waste deformations on landfill steep side wall lining stability. In: Proceedings of Wastecon 2000, September, Cape Town, vol. 2, pp. 379–388 (2000)Google Scholar
  4. Dixon, N., Ng’ambi, S., Jones, D.R.V.: Structural performance of a steep slope landfill lining system. Proc. Inst. Civil Eng. Geotechn. Eng. 157, 115–125 (2004)CrossRefGoogle Scholar
  5. Fassett, J.B., Leonardo, G.A., Repetto, P.C.: Geotechnical properties of municipal solid waste and their use in landfill design. In: Waste Tech 1994, Landfill Technology Technical Proceedings, Charleston, SC (USA), 13–14 January (1994)Google Scholar
  6. Gourc, J.P., Thomas, S., Vuillemin, M.: Proposal of a waste settlement survey methodology. In: Pinto, S. (ed.) Proceedings of Environmental Geotechnics, pp. 195–200. Balkema (1998)Google Scholar
  7. Gourc, J.P., Olivier, F., Thomas, S., Chatelet, L., Denecheau, P., Munoz, M.L.: Monitoring of waste settlements on five landfills: comparison of the efficiency of different devices. In: Proceedings of Sardinia 2001, Eighth International Waste Management and Landfill Symposium, Cagliari, Italy, pp. 515–524 (2001)Google Scholar
  8. Grisolia, M., Napoleoni, Q., Tancredi, G.: Contribution to a technical classification of MSW. In: Proceedings of Sardinia 1995, Fifth International Landfill Symposium, Cagliari, Italy, pp. 761–767 (1995)Google Scholar
  9. Grisolia, M., Napoleoni, Q., Tancredi, G.: The use of triaxial tests for the mechanical characterization of MSW. In: Proceedings of Sardinia 1995, Fifth International Landfill Symposium, Cagliari, Italy, pp. 703–710 (1995)Google Scholar
  10. Kavazanjian, E.: Mechanical properties of municipal solid waste. In: Proceedings of Sardinia 2001, Eighth International Waste Management and Landfill Symposium, Cagliari, Italy, pp. 415–424 (2001)Google Scholar
  11. Kavazanjian, E.: Evaluation of MSW properties using field measurements. In: Koerner, R.M., Koerner, G.R., Hsuan, Y., Ashley, M.V. (eds.) Proceedings of 17th Geosynthetic Research Institute Conference, Hot Topics in Geosynthetics—IV, pp. 74–113 (2003)Google Scholar
  12. Kavazanjian, E., Matasovic, R., Bachus, R.C.: Large-diameter static and cyclic laboratory testing of municipal solid waste. In: Proceedings of Sardinia 1999, Seventh International Waste Management and Landfill Symposium, Cagliari, Italy, pp. 437–444 (1999)Google Scholar
  13. Kavazanjian, N., Matasovic, R., Bonaparte, G.R., Schmertmazin, E.: Evaluation of MSW properties for seismic analysis. In: Geoenvironment 2000, Geotechnical Special Publication No. 46, pp. 1126–1141. ASCE (1995)Google Scholar
  14. Kolsch, F.: Material values for some mechanical properties of domestic waste. In: Proceedings of Sardinia 1995, Fifth International Landfill Symposium, Sardinia, vol. 2, p. 20 (1995)Google Scholar
  15. Landva, A., Clark, J.I.: Geotechnical testing of waste fill. In: Proceedings of Canadian Geotechnical Conference, Ottawa, Ontario, pp. 371–385 (1986)Google Scholar
  16. Landva, A., Clark, J.I.: Geotechnics of waste fills. Geotechnics of Waste Fills—Theory and Practice. ASTM STP 1070, 86–106 (1990)Google Scholar
  17. Landva, A.O., Valsangkar, A.J., Pelkey, S.G.: Lateral earth pressure at rest and compressibility of municipal solid waste. Can. Geotech. J. 37, 1157–1165 (2000)CrossRefGoogle Scholar
  18. Langer, U., Dixon, N.: Mechanical properties of MSW: development of a classification system. In: Yong, R.N., Thomas, H.R. (eds.) Proceedings Fourth British Geotechnical Association Geoenvironmental Engineering Conference. Integrated Management of Groundwater and Contaminated Land, pp. 267–274 (2004)Google Scholar
  19. Manassero, M., Van Impe, W.F., Bouazza, A.: Waste disposal and containment. In: Proceedings of Second International Congress on Environmental Geotechnics, Osaka, vol. 3, pp. 193–242 (1996)Google Scholar
  20. Powrie, W., Beaven, R.P.: Hydraulic properties of household waste and implications for landfills. Inst. Civil Eng. Geotechn. Eng. J. 137, 235–247 (1999)CrossRefGoogle Scholar
  21. Powrie, W., Richards, D.J., Beaven, R.P.: Compression of waste and implications for practice. In: Geotechnical Engineering of Landfills, pp. 3–18. Thomas Telford (1998)Google Scholar
  22. Siegel, R.A., Robertson, R.J., Anderson, D.G.: Slope Stability Investigations at a Landfill in Southern California. In: Geotechnics of Waste Fill—Theory and Practice, ASTM STP, p. 1070 (1990)Google Scholar
  23. Turczynski, U.: Geotechnische Aspekte beim Aufbau von Mehrkomponentendeponien. Ph.D. Thesis, Fakultät der technischen Wissenschaften, Bergakademie Freiberg, Germany (1988)Google Scholar
  24. Dixon, N., Russel, D., Jones, V.: Engineering properties of municipal solid waste (2005)Google Scholar
  25. Zekkos, D., et al.: Unit weight of municipal solid waste. J. Geotechn. Geoenviron. Eng. (2006)Google Scholar
  26. Wong, W.: Investigation of geotechnical properties of municipal solid waste as a function of placement conditions. Faculty of California Polytechnic State University, San Luis Obispo (2009)CrossRefGoogle Scholar
  27. Sowers, G.: Settlement of waste disposal fills. In: Proceedings of the 8th International Conference on Soil Mechanics and Foundation Engineering, Moscow, Russia (1973)Google Scholar
  28. Cowland, J., Tang, K., Gabay, J.: Density and strength properties of Hong Kong Refuse. In: Christensen, T.H., Cossu, R., Stegmann, R. (eds.) Proceedings of Sardinia 1993, 4th International Landfill Symposium, CISA, S. Margherita di Puls, Cagliari, Italy, pp. 1433–1446 (1993)Google Scholar
  29. Yesiller, N., Hanson, J.L., Cox, J.T., Noce, D.E.: Determination of specific gravity of municipal solid waste. Waste Manage. 34(5), 848–858 (2014). doi: 10.1016/j.wasman.2014.02.002 CrossRefGoogle Scholar
  30. Pulat, H.F., Yukselen-Aksoy, Y.: Compaction behaviour of synthetic and natural MSW samples in different compositions. Waste Manage. Res. 31(12), 1255–1261 (2013). doi: 10.1177/0734242X13507967 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • F. N. Okonta
    • 1
    • 2
    Email author
  • N. Ngcobo
    • 1
    • 2
  • M. Mtsweni
    • 1
    • 2
  • D. Harris
    • 1
    • 2
  1. 1.Head of Department of Civil Engineering ScienceUniversity of JohannesburgJohannesburgSouth Africa
  2. 2.Johannesburg Waste Agency (PIKITUP)JohannesburgSouth Africa

Personalised recommendations