Advertisement

Evaluation of Land Subsidence Based on Distributed Monitoring and SEM Analysis

  • Hongtao Jiang
  • Kai GuEmail author
  • Jianhua Yin
  • Bin Shi
  • Jiayu Ma
Conference paper
Part of the Sustainable Civil Infrastructures book series (SUCI)

Abstract

A better understanding on the relationship between macro compression behavior and microstructure of soil is essential in order to evaluate the trend of land subsidence. In this paper, distributed fiber optic sensing (DFOS) technology was applied in a borehole located in Guangming Village, Wuxi, China, to obtain the deformation of soil layers after the prohibition of deep groundwater withdrawal in this area. DFOS provided detailed information on the movement of soil layer within any depth range. The microstructure of undisturbed soil samples from the borehole was analyzed using SEM images. With the application of Particle/Pore and Crack Analysis System (PCAS), the micro porosity of samples were characterized by two statistical parameters called area probability distribution index and fractal dimension. Area probability distribution index described the distributions of micro-porosities and fractal dimension described the shape of pores in nature regardless of complexity. Good correlations between the deformation of soil layers and the two parameters about the microstructure characteristics were illustrated.

Keywords

Land subsidence DFOS SEM Compressibility 

Notes

Acknowledgments

Financial support from National Natural Science Foundation of China (No. 41372265, 41230636, 41502274), Natural Science Foundation of Jiangsu Province (No. BK20150389), China Postdoctoral Science Foundation (No. 2015M580414), Open foundation of State Key Laboratory of Geohazard Prevention and Geoenvironmental Protection, Chengdu University of Technology (SKLGP2016K010) was greatly appreciated.

References

  1. Chai, J.-C., Shen, S.-L., Zhu, H.-H., Zhang, X.-L.: Land subsidence due to groundwater drawdown in Shanghai. Géotechnique 54, 143–147 (2004). doi: 10.1680/geot.2004.54.2.143 CrossRefGoogle Scholar
  2. Chuhan, F.A., Kjeldstad, A., Bjørlykke, K., Høeg, K.: Experimental compression of loose sands: relevance to porosity reduction during burial in sedimentary basins. Can. Geotech. J. 40, 995–1011 (2003). doi: 10.1139/t03-050 CrossRefGoogle Scholar
  3. Dathe, A., Eins, S., Niemeyer, J., Gerold, G.: The surface fractal dimension of the soil-pore interface as measured by image analysis. Geoderma 103, 203–229 (2001). doi: 10.1016/S0016-7061(01)00077-5 CrossRefGoogle Scholar
  4. Dathe, A., Thullner, M.: The relationship between fractal properties of solid matrix and pore space in porous media. Geoderma 129, 279–290 (2005). doi: 10.1016/j.geoderma.2005.01.003 CrossRefGoogle Scholar
  5. Delage, P.: A microstructure approach to the sensitivity and compressibility of some Eastern Canada sensitive clays. Géotechnique 60, 353–368 (2010). doi: 10.1680/geot.2010.60.5.353 CrossRefGoogle Scholar
  6. Delage, P., Lefebvre, G.: Study of the structure of a sensitive Champlain clay and of its evolution during consolidation. Can. Geotech. J. 21, 21–35 (1984). doi: 10.1139/t84-003 CrossRefGoogle Scholar
  7. Galloway, D.L., Burbey, T.J.: Review: regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 19, 1459–1486 (2011). doi: 10.1007/s10040-011-0775-5 CrossRefGoogle Scholar
  8. Griffiths, F.J., Joshi, R.C.: Change in pore size distribution owing to secondary consolidation of clays. Can. Geotech. J. 28, 20–24 (1991). doi: 10.1139/t91-003 CrossRefGoogle Scholar
  9. Griffiths, F.J., Joshi, R.C.: Clay fabric response to consolidation. Appl. Clay Sci. 5, 37–66 (1990). doi: 10.1016/0169-1317(90)90005-A CrossRefGoogle Scholar
  10. Griffiths, F.J., Joshi, R.C.: Change in pore size distribution due to consolidation of clays. Géotechnique 40, 303–309 (1989). doi: 10.1680/geot.1990.40.2.303 CrossRefGoogle Scholar
  11. Hong, Z., Tateishi, Y., Han, J.: Experimental study of macro- and microbehavior of natural Diatomite. J. Geotech. Geoenviron. Eng. 132, 603–610 (2006). doi: 10.1061/(ASCE)1090-0241(2006)132:5(603) CrossRefGoogle Scholar
  12. Hu, J.P.: A study on the land subsidence effect after prohibiting extraction of groundwater in Suzhou- Wuxi-Changzhou area. Ph.D. thesis, Nanjing University (2011)Google Scholar
  13. Koliji, A., Vulliet, L., Laloui, L.: Structural characterization of unsaturated aggregated soil. Can. Geotech. J. 47, 297–311 (2010). doi: 10.1139/T09-089 CrossRefGoogle Scholar
  14. Liu, C., Shi, B., Zhou, J., Tang, C.: Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: application on SEM images of clay materials. Appl. Clay Sci. 54, 97–106 (2011). doi: 10.1016/j.clay.2011.07.022 CrossRefGoogle Scholar
  15. Monroy, R., Zdravkovic, L., Ridley, A.: Evolution of microstructure in compacted London Clay during wetting and loading. Géotechnique 60, 105–119 (2010). doi: 10.1680/geot.8.P.125 CrossRefGoogle Scholar
  16. Moore, C.A., Donaldson, C.F.: Quantifying soil microstructure using fractals. Géotechnique 45, 105–116 (1995). doi: 10.1680/geot.1995.45.1.105 CrossRefGoogle Scholar
  17. Revil, A., Grauls, D., Brevart, O.: Mechanical compaction of sand/clay mixtures. J. Geophys. Res. 107, 2293 (2002). doi: 10.1029/2001JB000318 Google Scholar
  18. Romero, E.: A microstructural insight into compacted clayey soils and their hydraulic properties. Eng. Geol. 165, 3–19 (2013). doi: 10.1016/j.enggeo.2013.05.024 CrossRefGoogle Scholar
  19. Shi, X., Wu, J., Ye, S., Zhang, Y., Xue, Y., Wei, Z., Li, Q., Yu, J.: Regional land subsidence simulation in Su-Xi-Chang area and Shanghai City, China. Eng. Geol. 100, 27–42 (2008). doi: 10.1016/j.enggeo.2008.02.011 CrossRefGoogle Scholar
  20. Shi, X.Q., Xue, Y.Q., Ye, S.J., Wu, J.C., Zhang, Y., Yu, J.: Characterization of land subsidence induced by groundwater withdrawals in Su-Xi-Chang area, China. Environ. Geol. 52, 27–40 (2007). doi: 10.1007/s00254-006-0446-3 CrossRefGoogle Scholar
  21. Tan, Z., Kong, L., Guo, A., Wan, Z.: Research on effect of compaction on pore size distribution of laterite soil. Rock Soil Mech. 31, 1427–1430 (2010). (in Chinese)Google Scholar
  22. Vallejo, L.E.: Fractal analysis of the fabric changes in a consolidating clay. Eng. Geol. 43, 281–290 (1996). doi: 10.1016/S0013-7952(96)00038-5 CrossRefGoogle Scholar
  23. Wang, G.Y., You, G., Shi, B., Yu, J., Tuck, M.: Long-term land subsidence and strata compression in Changzhou, China. Eng. Geol. 104, 109–118 (2009). doi: 10.1016/j.enggeo.2008.09.001 CrossRefGoogle Scholar
  24. Wu, J., Jiang, H., Su, J., Shi, B., Jiang, Y., Gu, K.: Application of distributed fiber optic sensing technique in land subsidence monitoring. J. Civ. Struct. Heal. Monit. (2015). doi: 10.1007/s13349-015-0133-8 Google Scholar
  25. Xu, Y.F., Sun, D.A.: Correlation of surface fractal dimension with frictional angle at critical state of sands. Géotechnique 55, 691–695 (2005). doi: 10.1680/geot.2005.55.9.691 CrossRefGoogle Scholar
  26. Yi, L., Zhang, F., Xu, H., Chen, S., Wang, W., Yu, Q.: Land subsidence in Tianjin, China. Environ. Earth Sci. 62, 1151–1161 (2011). doi: 10.1007/s12665-010-0604-5 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Hongtao Jiang
    • 1
  • Kai Gu
    • 2
    • 3
    Email author
  • Jianhua Yin
    • 2
  • Bin Shi
    • 2
  • Jiayu Ma
    • 2
  1. 1.School of Geographic and Oceanographic SciencesNanjing UniversityNanjingChina
  2. 2.School of Earth Sciences and EngineeringNanjing UniversityNanjingChina
  3. 3.Suzhou High-Tech InstituteNanjing UniversitySuzhouChina

Personalised recommendations