Advertisement

Sparsity Constrained Estimation in Image Processing and Computer Vision

  • Vishal Monga
  • Hojjat Seyed Mousavi
  • Umamahesh Srinivas
Chapter

Abstract

Over the past decade, sparsity has emerged as a dominant theme in signal processing and big data applications. In this chapter, we formulate and solve new flavors of sparsity-constrained optimization problems built on the family of spike-and-slab priors. First, we develop an efficient Iterative Convex Refinement solution to the hard non-convex problem of Bayesian signal recovery under sparsity-inducing spike-and-slab priors. We also offer a Bayesian perspective on sparse representation-based classification via the introduction of class-specific priors. This formulation represents a consummation of ideas developed for model-based compressive sensing into a general framework for sparse model-based classification.

References

  1. 1.
    Tikhonov AN, Arsenin VY (1977) Solution of Ill-posed Problems. Winston, New YorkMATHGoogle Scholar
  2. 2.
    Candès EJ, Romberg JK, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurements. Comm Pure Appl Math 59(8):1207–1223MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Donoho FL (1995) De-noising by soft-thresholding. IEEE Trans Inf Theory 41(3):613–627MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Fodor IK, Kamath C (2003) Denoising through wavelet shrinkage: An empirical study. J Elec Imag 12(1):151–160CrossRefGoogle Scholar
  5. 5.
    Coifman RR, Donoho DL (1995) Translation-invariant de-noising. In: Wavelets and statistics. Lecture Notes in Statistics Series, vol 103. Springer, pp 125–150Google Scholar
  6. 6.
    Simoncelli EP (1999) Bayesian denoising of visual images in the wavelet domain. In: Bayesian inference in wavelet-based models. pp 291–308, SpringerGoogle Scholar
  7. 7.
    Deledalle C-A, Denis L, Tupin F (2009) Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Trans Image Process 18(12):2661–2672MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Romberg JK, Choi H, Baraniuk RG (2001) Bayesian tree-structured image modeling using wavelet-domain hidden Markov models. IEEE Trans Image Process 10(7):1056–1068CrossRefGoogle Scholar
  9. 9.
    Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dong W, Li X, Zhang L, Shi G (2011) Sparsity-based image denoising via dictionary learning and structural clustering. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 457–464Google Scholar
  11. 11.
    Guillemot C, Le Meur O (2014) Image inpainting: Overview and recent advances. IEEE Signal Process Mag 31(1):127–144CrossRefGoogle Scholar
  12. 12.
    Bertalmio M, Sapiro G, Caselles V, Ballester C (2000) Image inpainting. In: Proc ACM Conf Comput Graph Interactive Tech. ACM, pp 417–424Google Scholar
  13. 13.
    Telea A (2004) An image inpainting technique based on the fast marching method. J Graphics Tools 9(1):23–34CrossRefGoogle Scholar
  14. 14.
    Liang L, Liu C, Xu Y-Q, Guo B, Shum H-Y (2001) Real-time texture synthesis by patch-based sampling. ACM Trans Graph 20(3):127–150CrossRefGoogle Scholar
  15. 15.
    Guleryuz OG (2006) Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part I: Theory. IEEE Trans Image Process 15(3):539–554CrossRefGoogle Scholar
  16. 16.
    Li X (2011) Image recovery via hybrid sparse representations: A deterministic annealing approach. IEEE J Sel Topics Signal Process 5(5):953–962CrossRefGoogle Scholar
  17. 17.
    Starck J-L, Elad M, Donoho DL (2005) Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans Image Process 14(10):1570–1582MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Kim SP, Bose NK, Valenzuela HM (1990) Recursive reconstruction of high resolution image from noisy undersampled multiframes. IEEE Trans Acoust, Speech, Signal Process 38(6):1013–1027CrossRefGoogle Scholar
  19. 19.
    Freeman WT, Jones TR, Pasztor EC (2002) Example-based super-resolution. IEEE Comput Graph Appln 22(2):56–65CrossRefGoogle Scholar
  20. 20.
    Farsiu S, Robinson MD, Elad M, Milanfar P (2004) Fast and robust multiframe super resolution. IEEE Trans Image Process 13(10):1327–1344CrossRefGoogle Scholar
  21. 21.
    Park SC, Park MK, Kang MG (2003) Super-resolution image reconstruction: A technical overview. IEEE Signal Process Mag 20(3):21–36CrossRefGoogle Scholar
  22. 22.
    Tappen MF, Russell BC, Freeman WT (2003) Exploiting the sparse derivative prior for super-resolution and image demosaicing. In: IEEE Workshop on Statistical and Computational Theories of VisionGoogle Scholar
  23. 23.
    Fattal R (2007) Image upsampling via imposed edge statistics. ACM Trans. Graph. 26(3). Article No. 95. http://doi.acm.org/10.1145/1276377.1276496
  24. 24.
    Dai S, Han M, Xu W, Wu Y, Gong Y (2007) Soft edge smoothness prior for alpha channel super resolution. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 1–8Google Scholar
  25. 25.
    Yang J, Wright J, Huang T, Ma Y (2008) Image super-resolution as sparse representation of raw image patches. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 1–8Google Scholar
  26. 26.
    Yang J, Wright J, Huang T, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Yang J, Wang Z, Lin Z, Cohen S, Huang T (2012) Coupled dictionary training for image super-resolution. IEEE Trans Image Process 21(8): 3467–3478MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Zeyde R, Elad M, Protter M (2012) On single image scale-up using sparse-representations. In: Curves and Surfaces. Springer, pp 711–730MATHGoogle Scholar
  29. 29.
    Timofte R, De Smet V, Van Gool L (2013) Anchored neighborhood regression for fast example-based super-resolution. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 1920–1927Google Scholar
  30. 30.
    Timofte R, De Smet V, Van Gool L (2014) A+: Adjusted anchored neighborhood regression for fast super-resolution. In: Proc Asian Conf Comput Vision, pp 111–126Google Scholar
  31. 31.
    Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Machine Intell 31(2):210–227CrossRefGoogle Scholar
  32. 32.
    Taubman DS, Marcellin MW (2001) JPEG 2000: Image Compression Fundamentals, Standards and Practice. Kluwer Academic, Norwell, MAGoogle Scholar
  33. 33.
    Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381: 607–609CrossRefGoogle Scholar
  34. 34.
    Candès E, Romberg J, Tao T (2006) Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Lustig M, Donoho DL, Pauly JL (2007) Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med 58: 1182–1195CrossRefGoogle Scholar
  36. 36.
    Kreutz-Delgado K, Murray JF, Rao BD, Engan K, Lee T-W, Sejnowski TJ (2003) Dictionary learning algorithms for sparse representation. Neural Comput 15(2):349–396MATHCrossRefGoogle Scholar
  37. 37.
    Sprechmann P, Ramirez I, Sapiro G, Eldar YC (2011) C-HiLasso: A collaborative hierarchical sparse modeling framework. IEEE Trans Signal Process 59(9):4183–4198MathSciNetCrossRefGoogle Scholar
  38. 38.
    Srinivas U, Suo Y, Dao M, Monga V, Tran TD (2015) Structured sparse priors for image classification. IEEE Trans Image Process 24(6):1763–1776MathSciNetCrossRefGoogle Scholar
  39. 39.
    Mousavi HS, Srinivas U, Monga V, Suo Y, Dao M, Tran TD (2014) Multi-task image classification via collaborative, hierarchical spike-and-slab priors. In: Proc IEEE Int Conf Image Process, pp 4236–4240Google Scholar
  40. 40.
    Suo Y, Dao M, Tran T, Mousavi H, Srinivas U, Monga V (2014) Group structured dirty dictionary learning for classification. In: Proc IEEE Int Conf Image Process, pp 150–154Google Scholar
  41. 41.
    Anaraki FP, Hughes SM (2013) Compressive K-SVD. In: Proc IEEE Int Conf Acoust, Speech, Signal Process. pp 5469–5473Google Scholar
  42. 42.
    Sadeghi, M Babaie-Zadeh M, Jutten C (2013) Dictionary learning for sparse representation: A novel approach. IEEE Signal Process Lett 20(12): 1195–1198CrossRefGoogle Scholar
  43. 43.
    Gorodnitsky IF, Rao BD (1997) Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Trans Signal Process 45(3):600–616CrossRefGoogle Scholar
  44. 44.
    Wright SJ, Nowak RD, Figueiredo MA (2009) Sparse reconstruction by separable approximation. IEEE Trans Signal Process 57(7):2479–2493MathSciNetCrossRefGoogle Scholar
  45. 45.
    Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745MathSciNetCrossRefGoogle Scholar
  47. 47.
    Andersen MR, Winther O, Hansen LK (2014) Bayesian inference for structured spike and slab priors. In: Adv Neural Inf Process Syst, pp 1745–1753Google Scholar
  48. 48.
    Srinivas U, Mousavi HS, Monga V, Hattel A, Jayarao B (2014) Simultaneous sparsity model for histopathological image representation and classification.” IEEE Trans Med Imag 33(5): 1163–1179Google Scholar
  49. 49.
    Baraniuk RG (2007) Compressive sensing. IEEE Signal Process Mag 24(4):118–121MathSciNetCrossRefGoogle Scholar
  50. 50.
    Tibshirani R (2011) Regression shrinkage and selection via the Lasso: A retrospective. J R Stat Soc Ser B (Methodological) 73(3):273–282MathSciNetCrossRefGoogle Scholar
  51. 51.
    Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodological) 58(1):267–288MathSciNetMATHGoogle Scholar
  52. 52.
    Donoho DL (2006) For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution. Commun Pure Appl Math 59(6):797–829MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Becker S, Bobin J, Candès EJ (2011) Nesta: A fast and accurate first-order method for sparse recovery. SIAM J Imag Sci 4(1):1–39MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Candes EJ, Wakin MB, Boyd SP (2008) Enhancing sparsity by reweighted L1 minimization. J Fourier Anal Appl 14(5–6):877–905MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B (Methodological) 68(1):49–67MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B (Methodological) 67(2):301–320MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Zou H (2006) The adaptive lasso and its oracle properties. J Amer Stat Assoc 101(476):1418–1429MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Zou H, Zhang HH (2009) On the adaptive elastic-net with a diverging number of parameters. Ann Stat 37(4):1733–1751MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Tibshirani R, Saunders M, Rosset S, Zhu J, Knight K (2005) Sparsity and smoothness via the fused Lasso. J R Stat Soc Ser B (Methodological) 67(1):91–108MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Yuan M, Lin Y (2007) Model selection and estimation in the gaussian graphical model. Biometrika 94(1):19–35MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Candes E, Tao T (2007) The dantzig selector: Statistical estimation when p is much larger than n. Ann Stat 35(6):2313–2351MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    Tibshirani RJ, Hoefling H, Tibshirani R (2011) Nearly-isotonic regression. Technometrics 53(1):54–61MathSciNetCrossRefGoogle Scholar
  63. 63.
    Candes EJ, Tao T (2010) The power of convex relaxation: Near-optimal matrix completion. IEEE Trans Inf Theory 56(5):2053–2080MathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    Mazumder R, Hastie T, Tibshirani R (2010) Spectral regularization algorithms for learning large incomplete matrices. J Mach Learn Res 11(Aug): 2287–2322MathSciNetMATHGoogle Scholar
  65. 65.
    Mousavi A, Maleki A, RG Baraniuk (2013) Asymptotic analysis of LASSOs solution path with implications for approximate message passing. arXiv preprint arXiv:1309.5979Google Scholar
  66. 66.
    Mohimani H, Babaie-Zadeh M, Jutten C (2009) A fast approach for overcomplete sparse decomposition based on smoothed norm. IEEE Trans Signal Process 57(1):289–301MathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    Wipf DP, Rao BD (2004) Sparse Bayesian learning for basis selection. IEEE Trans Signal Process 52(8):2153–2164MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Ji S, Xue Y, Carin L (2008) Bayesian compressive sensing. IEEE Trans Signal Process 56(6):2346–2356MathSciNetCrossRefGoogle Scholar
  69. 69.
    Lu X, Wang Y, Yuan Y (2013) Sparse coding from a Bayesian perspective. IEEE Trans Neur Netw Learn Sys 24(6):929–939CrossRefGoogle Scholar
  70. 70.
    Dobigeon N, Hero AO, Tourneret J-Y (2009) Hierarchical bayesian sparse image reconstruction with application to MRFM. IEEE Trans Image Process 18(9):2059–2070MathSciNetMATHCrossRefGoogle Scholar
  71. 71.
    Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3(1):1–122MATHCrossRefGoogle Scholar
  72. 72.
    Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imag Sci 2(1):183–202MathSciNetMATHCrossRefGoogle Scholar
  73. 73.
    Tropp JA (2006) Algorithms for simultaneous sparse approximation. Part II: Convex relaxation. Signal Processing 86(3):589–602MathSciNetMATHCrossRefGoogle Scholar
  74. 74.
    Baraniuk RG, Cevher V, Duarte MF, Hegde C (2010) Model-based compressive sensing. IEEE Trans Image Process 56(4):1982–2001MathSciNetMATHGoogle Scholar
  75. 75.
    He L, Carin L (2009) Exploiting structure in wavelet-based Bayesian compressive sensing. IEEE Trans Signal Process 57(9):3488–3497MathSciNetCrossRefGoogle Scholar
  76. 76.
    Babacan S, Molina R, Katsaggelos A (2010) Bayesian compressive sensing using Laplace priors. IEEE Trans Image Process 19(1):53–63MathSciNetMATHCrossRefGoogle Scholar
  77. 77.
    Suo Y, Dao M, Tran T, Srinivas U, Monga V (2013) Hierarchical sparse modeling using spike and slab priors. In: Proc IEEE Int Conf Acoust, speech, Signal Process. pp 3103–3107Google Scholar
  78. 78.
    Srinivas U, Suo Y, Dao M, Monga V, Tran TD (2013) Structured sparse priors for image classification. In: Proc IEEE Int Conf Image Process, pp 3211–3215Google Scholar
  79. 79.
    Jenatton R, Audibert J-Y, Bach F (2011) Structured variable selection with sparsity-inducing norms. J Mach Learn Res 12:2777–2824MathSciNetMATHGoogle Scholar
  80. 80.
    Huang J, Zhang T, Metaxas D (2011) Learning with structured sparsity. J Mach Learn Res 12: 3371–3412MathSciNetMATHGoogle Scholar
  81. 81.
    Huang J, Zhang T et al (2010) The benefit of group sparsity. Ann Stat 38(4):1978–2004MathSciNetMATHCrossRefGoogle Scholar
  82. 82.
    Cotter SF, Rao BD, Engan K, Kreutz-Delgado K (2005) Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans Signal Process 53(7):2477–2488MathSciNetMATHCrossRefGoogle Scholar
  83. 83.
    Eldar YC, Rauhut H (2010) Average case analysis of multichannel sparse recovery using convex relaxation. IEEE Trans Inf Theory 56(1):505–519MathSciNetMATHCrossRefGoogle Scholar
  84. 84.
    Yen T-J (2011) A majorization–minimization approach to variable selection using spike and slab priors. Ann Stat 39(3):1748–1775MathSciNetMATHCrossRefGoogle Scholar
  85. 85.
    Cevher V, Indyk P, Carin L, Baraniuk RG (2010) Sparse signal recovery and acquisition with graphical models. IEEE Signal Process Mag 27(6):92–103Google Scholar
  86. 86.
    Cevher V (2009) Learning with compressible priors. In: Adv Neural Inf Process Syst, pp 261–269Google Scholar
  87. 87.
    Cevher V, Indyk P, Carin L, Baraniuk RG (2010) Sparse signal recovery and acquisition with graphical models. IEEE Signal Process Mag 27(6):92–103Google Scholar
  88. 88.
    Mitchell TJ, Beauchamp JJ (1988) Bayesian variable selection in linear regression. J Amer Stat Assoc 83(404):1023–1032MathSciNetMATHCrossRefGoogle Scholar
  89. 89.
    George EI, McCulloch RE (1993) Variable selection via Gibbs sampling. J Amer Stat Assoc 88(423):881–889CrossRefGoogle Scholar
  90. 90.
    Ishwaran H, Rao JS (2005) Spike and slab variable selection: Frequentist and Bayesian strategies. Ann Stat 730–773Google Scholar
  91. 91.
    Carvalho CM, Chang J, Lucas JE, Nevins JR, Wang Q, West M (2008) High-dimensional sparse factor modeling: Applications in gene expression genomics. J Amer Stat Assoc 103(484): 1438–1456MathSciNetMATHCrossRefGoogle Scholar
  92. 92.
    Titsias MK, Lázaro-Gredilla M (2011) Spike and slab variational inference for multi-task and multiple kernel learning. In: Adv Neural Inf Process Syst, pp 2339–2347Google Scholar
  93. 93.
    Hernández-Lobato JM, Hernández-Lobato D, Suárez A (2014) Expectation propagation in linear regression models with spike-and-slab priors. Machine Learning pp 1–51Google Scholar
  94. 94.
    Hernández-Lobato D, Hernández-Lobato JM, Dupont P (2013) Generalized spike-and-slab priors for bayesian group feature selection using expectation propagation. J Mach Learn Res 14(1):1891–1945MathSciNetMATHGoogle Scholar
  95. 95.
    Kappen HJ, Gómez V (2014) The variational garrote. Machine Learning 96(3):269–294MathSciNetMATHCrossRefGoogle Scholar
  96. 96.
    Vila J, Schniter P (2011) Expectation-maximization Bernoulli-Gaussian approximate message passing. In: Proc IEEE Asilomar Conf Signal, Syst, Comput, pp 799–803Google Scholar
  97. 97.
    Mousavi, HS, Monga V, Tran TD (2015) Iterative convex refinement for sparse recovery. IEEE Signal Process Lett 22(11):1903–1907CrossRefGoogle Scholar
  98. 98.
    Chouzenoux E, Jezierska A, Pesquet J-C, Talbot H (2013) A majorize-minimize subspace approach for 2 0 image regularization. SIAM J Imag Sci 6(1):563–591MathSciNetMATHCrossRefGoogle Scholar
  99. 99.
    Chaari L, Batatia H, Dobigeon N, Tourneret J-Y (2014) A hierarchical sparsity-smoothness bayesian model for 0 + 1 + 2 regularization. In: Proc IEEE Int Conf Acoust, Speech, Signal Process, pp 1901–1905Google Scholar
  100. 100.
    Mohammadi M, Fatemizadeh E, Mahoor M (2014) PCA-based dictionary building for accurate facial expression recognition via sparse representation. J Vis Commun Image Represent 25(5):1082–1092CrossRefGoogle Scholar
  101. 101.
    Burton D, Coleman J (2010) Quasi-Cauchy sequences. Am Math Monthly 117(4):328–333MathSciNetMATHCrossRefGoogle Scholar
  102. 102.
    Wright SJ, Nowak RD, Figueiredo M (2014) SpaRSA software. [Online]. Available: http://www.lx.it.pt/~mtf/SpaRSA/
  103. 103.
    IBM (2014) ILOG CPLEX optimization studio. [Online]. Available: http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
  104. 104.
    LeCun Y, Cortes C, Burges CJ (2014) MNIST dataset. [Online]. Available: http://yann.lecun.com/exdb/mnist/
  105. 105.
    Afonso MV, Bioucas-Dias JM, Figueiredo MA (2010) Fast image recovery using variable splitting and constrained optimization. IEEE Trans Image Process 19(9):2345–2356MathSciNetMATHCrossRefGoogle Scholar
  106. 106.
    Chambolle A (2004) An algorithm for total variation minimization and applications. J Math Imaging Vis 20(1–2):89–97MathSciNetMATHGoogle Scholar
  107. 107.
    Pillai JK, Patel VM, Chellappa R, Ratha NK (2011) Secure and robust iris recognition using random projections and sparse representations. IEEE Trans Pattern Anal Machine Intell 33(9):1877–1893CrossRefGoogle Scholar
  108. 108.
    Majumdar A, Ward RK (2009) Classification via group sparsity promoting regularization. In: Proc IEEE Int Conf Acoust, Speech, Signal Process, pp 861–864Google Scholar
  109. 109.
    Zhao W, Chellappa R, Phillips PJ, Rosenfeld A (2003) Face recognition: A literature survey. ACM Comput Surv 35(4):399–458CrossRefGoogle Scholar
  110. 110.
    Zhang X, Gao Y (2009) Face recognition across pose: A review. Pattern Recognition 42(11): 2876–2896CrossRefGoogle Scholar
  111. 111.
    Li SZ, Jain AK (eds) (2011) Handbook of Face Recognition, 2nd edn. SpringerGoogle Scholar
  112. 112.
    Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Machine Intell 23(6):643–660CrossRefGoogle Scholar
  113. 113.
    Martinez AM, Benavente R (1998) The AR face database. CVC Technical Report, 24Google Scholar
  114. 114.
    Yang M, Zhang L, Yang J, Zhang D (2011) Robust sparse coding for face recognition. In: Proc IEEE Conf Comput Vision Pattern Recogn, pp 625–632Google Scholar
  115. 115.
    M. Turk and A. Pentland (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86CrossRefGoogle Scholar
  116. 116.
    Ho J, Yang M, Lim J, Lee K, Kriegman D (2003) Clustering appearances of objects under varying illumination conditions. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 11–18Google Scholar
  117. 117.
    Vapnik VN (1995) The nature of statistical learning theory. New York, USA: SpringerMATHCrossRefGoogle Scholar
  118. 118.
    Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans Pattern Anal Machine Intell 19(7): 711–720CrossRefGoogle Scholar
  119. 119.
    Huang J, Huang X, Metaxas D (2008) Simultaneous image transformation and sparse representation recovery. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 1–8Google Scholar
  120. 120.
    Wagner A, Wright J, Ganesh A, Zhou Z, Mobahi H, Ma Y (2012) Towards a practical face recognition system: Robust alignment and illumination by sparse representation. IEEE Trans Pattern Anal Machine Intell 34(2):372–386CrossRefGoogle Scholar
  121. 121.
    Fei-Fei L, Fergus R, Perona P (2004) Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 59–70Google Scholar
  122. 122.
    Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 2169–2178Google Scholar
  123. 123.
    Zhang H, Berg A, Maire M, Malik J (2006) SVM-KNN: Discriminative nearest neighbor classification for visual category recognition. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 2126–2136Google Scholar
  124. 124.
    Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y (2010) Locality-constrained linear coding for image classification. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 3360–3367Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Vishal Monga
    • 1
  • Hojjat Seyed Mousavi
    • 1
  • Umamahesh Srinivas
    • 2
  1. 1.The Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Apple Inc.CupertinoUSA

Personalised recommendations