Skip to main content

Abstract

The fact that multimedia services have become the major driver for next generation wireless networks underscores their technological and economic impact. A vast majority of these multimedia services are consumer-centric and therefore must guarantee a certain level of perceptual quality. Given the massive volumes of image and video data in question, it is only natural to adopt automatic quality prediction and optimization tools. The past decade has seen the invention of several excellent automatic quality prediction tools for natural images and videos. While these tools predict perceptual quality scores accurately, they do not necessarily lend themselves to standard optimization techniques. In this chapter, a systematic framework for optimization with respect to a perceptual quality assessment algorithm is presented. The Structural SIMilarity (SSIM) index, which has found vast commercial acceptance owing to its high performance and low complexity, is the representative image quality assessment model that is studied. Specifically, a detailed exposition of the mathematical properties of the SSIM index is presented first, followed by a discussion on the design of linear and non-linear SSIM-optimal image restoration algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Andrews HC, Hunt BR (1977) Digital image restoration. Signal processing series. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  2. Bertsekas DP (1995) Dynamic programming and optimal control. Athena Scientific, Belmont, MA

    MATH  Google Scholar 

  3. Bertsekas DP (1999) Nonlinear programming. Athena Scientific, Belmont, MA

    MATH  Google Scholar 

  4. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  5. Brunet D (2012) A study of the structural similarity image quality measure with applications to image processing. PhD thesis, University of Waterloo

    Google Scholar 

  6. Brunet D, Vrscay ER, Wang Z (2010) Structural similarity-based approximation of signals and images using orthogonal bases. In: Kamel M, Campilho A (eds) Proceedings on an international conference on image analysis and recognition. Lecture notes in computer science, vol 6111. Springer, Heidelberg, pp 11–22

    Chapter  Google Scholar 

  7. Brunet D, Vrscay ER, Wang Z (2012) On the mathematical properties of the structural similarity index. IEEE Trans Image Process 21(4):1488–1499

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang H-W, Yang H, Gan Y, Wang M-H (2013) Sparse feature fidelity for perceptual image quality assessment. IEEE Trans Image Process 22(10):4007–4018

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang SG, Yu B, Vetterli M (2000) Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Process 9(9):1532–1546

    Article  MathSciNet  MATH  Google Scholar 

  10. Channappayya SS, Bovik AC, Heath RW (2006) A linear estimator optimized for the structural similarity index and its application to image denoising. In: Proceedings on IEEE international conference on image processing, IEEE, pp 2637–2640

    Google Scholar 

  11. Channappayya SS, Bovik AC, Heath RW (2008) Perceptual soft thresholding using the structural similarity index. In: Proceedings on IEEE international conference on image processing, IEEE, pp 569–572

    Google Scholar 

  12. Chen SS, Donoho DL, Saunders MA (2001) Atomic decomposition by basis pursuit. SIAM Rev 43:129–159

    Article  MathSciNet  MATH  Google Scholar 

  13. Davis G, Mallat S, Avellaneda M (1997) Greedy adaptive approximation. J Constr Approx 13:57–98

    Article  MATH  Google Scholar 

  14. Donoho DL (1995) De-noising by soft-thresholding. IEEE Trans Inf Theory 41(3):613–627

    Article  MathSciNet  MATH  Google Scholar 

  15. Donoho DL, Johnstone IM (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3):425–455

    Article  MathSciNet  MATH  Google Scholar 

  16. Donoho DL, Johnstone IM (1995) Adapting to unknown smoothness via wavelet shrinkage. J Amer Stat Assoc 90(432):1200–1224

    Article  MathSciNet  MATH  Google Scholar 

  17. Jin L, Egiazarian K, Kuo CCJ (2012) Perceptual image quality assessment using block-based multi-metric fusion (BMMF). In: Proceedings on IEEE international conference on acoustics, speech, and signal processing, IEEE, pp 1145–1148

    Google Scholar 

  18. Katsaggelos AK (2012) Digital image restoration. Springer, Heidelberg

    Google Scholar 

  19. Kolaman A, Yadid-Pecht O (2012) Quaternion structural similarity: a new quality index for color images. IEEE Trans Image Process 21(4):1526–1536

    Article  MathSciNet  MATH  Google Scholar 

  20. Mallat S, Zhang Z (1993) Matching pursuit with time-frequency dictionaries. IEEE Trans Signal Process 41:3397–3415

    Article  MATH  Google Scholar 

  21. Mannos J, Sakrison D (1974)The effects of a visual fidelity criterion of the encoding of images. IEEE Trans Inf Theory 20(4):525–536

    Article  MATH  Google Scholar 

  22. Okarma K (2009) Colour image quality assessment using structural similarity index and singular value decomposition. In: Kamel M, Campilho A (eds) Proceedings on international conference on image analysis and recognition. Lecture notes in computer science, vol 5337. Springer, Heidelberg, pp 55–65

    Google Scholar 

  23. Otero D, La Torre D, Vrscay ER (2015) Structural similarity-based optimization problems with L1̂-regularization: smoothing using mollifiers. In: Proceedings on international conference on image analysis. Springer, pp 33–42

    Google Scholar 

  24. Otero D, Vrscay ER (2014) Solving optimization problems that employ structural similarity as the fidelity measure. In: Proceedings on international conference on image processing, computer vision and pattern recognition, CSREA Press, pp 474–479

    Google Scholar 

  25. Otero D, Vrscay ER (2014) Unconstrained structural similarity-based optimization. In: Proceedings on international conference on image analysis and recognition. Springer, Heidelberg, pp 167–176

    Google Scholar 

  26. Pati YC, Rezaiifar R, Krishnaprasad PS (1993) Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In: Proceedings on IEEE Asilomar conference on signals, systems, and computers, pp 40–44

    Google Scholar 

  27. Ponomarenko N, Ieremeiev O, Lukin V, Egiazarian K, Carli M (2011) Modified image visual quality metrics for contrast change and mean shift accounting. In: Proceedings on international conference on the experience of designing and aApplication of CAD systems in microelectronics, pp 305–311

    Google Scholar 

  28. Ponomarenko N, Jin L, Ieremeiev O, Lukin V, Egiazarian K, Astola J, Vozel B, Chehdi K, Carli M, Battisti F et al (2015) Image database TID2013: Peculiarities, results and perspectives. Signal Processing: Image Communication 30:57–77

    Google Scholar 

  29. Ponomarenko N, Lukin V, Zelensky A, Egiazarian K, Carli M, Battisti F (2009) TID2008-a database for evaluation of full-reference visual quality assessment metrics. Adv Mod Radioelectronics 10(4):30–45

    Google Scholar 

  30. Portilla J, Simoncelli E (2003) Image restoration using gaussian scale mixtures in the wavelet domain. In: Proceedings on IEEE international conference on image processing, vol 2, IEEE, pp 965–968

    Google Scholar 

  31. Rehman A, Rostami M, Wang Z, Brunet D, Vrscay ER (2012) SSIM-inspired image restoration using sparse representation, EURASIP J Adv Signal Processing. Special Issue on Image and Video Quality Improvement Techniques for Emerging Applications 16(1):1–12

    Google Scholar 

  32. Rehman A, Wang Z, Brunet D, Vrscay ER (2011) SSIM-inspired image denoising using sparse representations. In: Proceedings on IEEE international conference on acoustics, speech, and signal processing, Prague, Czech Republic, pp 1121–1124

    Google Scholar 

  33. Rubinstein R, Zibulevsky M, Elad M (2008) Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit, Technical Report, Department of Computer Science, Technion, Israel Institute of Technology, Haifa, Israel

    Google Scholar 

  34. Sampat MP, Wang Z, Gupta S, Bovik AC, Markey MK (2009) Complex wavelet structural similarity: A new image similarity index. IEEE Trans Image Process 18(11):2385–2401

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang Z, Bovik AC (2002) A universal image quality index. IEEE Signal Process Lett 9(3):81–84

    Article  Google Scholar 

  36. Wang Z, Bovik AC (2011) Reduced- and no-reference image quality assessment. IEEE Signal Process Mag 28(6):29–40

    Article  Google Scholar 

  37. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  38. Wang Z, Li Q (2011) Information content weighting for perceptual image quality assessment. IEEE Trans Image Process 20(5):1185–1198

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang Z, Lu L, Bovik AC (2004) Video quality assessment based on structural distortion measurement. Signal Processing: Image Communication 19(2):121–132

    Google Scholar 

  40. Wang Z, Shang X (2006) Spatial pooling strategies for perceptual image quality assessment. In: Proceedings on IEEE international conference on image processing, IEEE, pp 2945–2948

    Google Scholar 

  41. Wang Z, Simoncelli EP, Bovik AC (2003) Multiscale structural similarity for image quality assessment. In: Proceedings on IEEE Asilomar conference on signals, systems, and computers, vol 2, IEEE, pp 1398–1402

    Google Scholar 

  42. Zhang L, Li H (2012) SR-SIM: A fast and high performance IQA index based on spectral residual. In: Proceedings on IEEE international conference on image processing, pp 1473–1476

    Google Scholar 

  43. Zhang L, Zhang L, Mou X, Zhang D (2011) FSIM: A feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang W, Borji A, Wang Z, Le Callet P, Liu H (2016) The application of visual saliency models in objective image quality assessment: A statistical evaluation. IEEE Trans Neur Netw Learn Sys 27(6):1266–1278

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Brunet, D., Channappayya, S.S., Wang, Z., Vrscay, E.R., Bovik, A.C. (2018). Optimizing Image Quality. In: Monga, V. (eds) Handbook of Convex Optimization Methods in Imaging Science. Springer, Cham. https://doi.org/10.1007/978-3-319-61609-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61609-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61608-7

  • Online ISBN: 978-3-319-61609-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics