Skip to main content
  • 1643 Accesses

Abstract

Images and videos are ubiquitous in our multimedia-rich environment today. We can capture photographs on a variety of devices, from inexpensive mobile phones to highly sophisticated cameras, spanning an impressive range in sensor pixel-count and picture resolution. We watch video content on displays ranging in size from handheld devices to gigantic movie screens. The resolution on these videos ranges from the grainy CIF (352 × 288) in CCTVs all the way up to 8K ultra high-definition (7680 × 4320) and beyond. If that is not impressive enough, devices routinely support high-quality streaming video content, while preserving the richness of spectral or color information. By some estimates, the global consumer electronics market is poised to be worth a mind-boggling trillion US dollars by 2020.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The 0 operator is not technically a norm, but it is occasionally referred to as a norm in literature, admitting a mild abuse of convention.

References

  1. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  2. Wiener N (1949) Extrapolation, interpolation, and smoothing of stationary time series: With engineering applications. J Am Stat Assoc 47(258):489–509

    MATH  Google Scholar 

  3. Karmarkar N (1984) A new polynomial time algorithm for linear programming. Combinatorica 4(4):373–395

    Article  MathSciNet  MATH  Google Scholar 

  4. Nesterov Y, Nemirovskii A (1994) Interior-point polynomial methods in convex programming. Society for Industrial and Applied Mathematics, Philadelphia, PA

    MATH  Google Scholar 

  5. Wright SJ (1997) Primal-dual interior-point methods. Society for Industrial and Applied Mathematics, Philadelphia, PA

    Book  Google Scholar 

  6. Forsgren A, Gill PE, Wright MH (2002) Interior methods for nonlinear optimization. SIAM Rev 44(4):525–597

    Article  MathSciNet  MATH  Google Scholar 

  7. Candes EJ, Romberg JK, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math 59(8):1207–1223

    Article  MathSciNet  MATH  Google Scholar 

  8. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2): 210–227

    Article  Google Scholar 

  9. Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imag Sci 2(1):183–202

    Article  MathSciNet  MATH  Google Scholar 

  10. Donoho DL (2006) For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution. Commun Pure Appl Math 59(6):797–829

    Article  MathSciNet  MATH  Google Scholar 

  11. Baraniuk RG (2007) Compressive sensing. IEEE Signal Process Mag 24(4):118–121

    Article  MathSciNet  Google Scholar 

  12. Yang J, Wright J, Huang T, Ma Y (2008) Image super-resolution as sparse representation of raw image patches. In: Proc. IEEE Conf Comput Vision Pattern Recogn, pp 1–8

    Google Scholar 

  13. Bertalmio M, Sapiro G, Caselles V, Ballester C (2000) Image inpainting. In: Proc. 27th Annual Conf Computer Graph Interactive Tech, pp 417–424

    Google Scholar 

  14. Deledalle C-A, Denis L, Tupin F (2009) Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Trans Image Process 18(12):2661–2672

    Article  MathSciNet  MATH  Google Scholar 

  15. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12): 3736–3745

    Article  MathSciNet  Google Scholar 

  16. Candes EJ, Tao T (2010) The power of convex relaxation: near-optimal matrix completion. IEEE Trans Inf Theory 56(5):2053–2080

    Article  MathSciNet  MATH  Google Scholar 

  17. Cui X, Huang J, Zhang S, Metaxas DN (2012) Background subtraction using low rank and group sparsity constraints. In: Proc. European Conf Comput Vision. Springer, Berlin, pp 612–625

    Google Scholar 

  18. Liang X, Ren X, Zhang Z, Ma Y (2012) Repairing sparse low-rank texture. In: Proc. European Conf Comput Vision. Springer, Berlin, pp 482–495

    Google Scholar 

  19. Nocedal J, Wright SJ (2006) Sequential quadratic programming. Springer, Berlin

    Google Scholar 

  20. Boggs PT, Tolle JW (1995) Sequential quadratic programming. Acta Numer 4:1–51

    Article  MathSciNet  MATH  Google Scholar 

  21. Candes EJ, Wakin MB, Boyd SP (2008) Enhancing sparsity by reweighted l1 minimization. J Fourier Anal Appl 14(5–6):877–905

    Article  MathSciNet  MATH  Google Scholar 

  22. Mousavi HS, Monga V, Tran TD (2015) Iterative convex refinement for sparse recovery. IEEE Signal Process Lett 22(11):1903–1907

    Article  Google Scholar 

  23. Aldayel O, Monga V, Rangaswamy M (2016) Successive QCQP refinement for MIMO radar waveform design under practical constraints. IEEE Trans Signal Process 64(14):3760–3774

    Article  MathSciNet  Google Scholar 

  24. Srinivas U, Suo Y, Dao M, Monga V, Tran TD (2015) Structured sparse priors for image classification. IEEE Trans Image Process 24(6):1763–1776

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Monga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Monga, V. (2018). Introduction. In: Monga, V. (eds) Handbook of Convex Optimization Methods in Imaging Science. Springer, Cham. https://doi.org/10.1007/978-3-319-61609-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61609-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61608-7

  • Online ISBN: 978-3-319-61609-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics