Advertisement

A Method for an Efficient, Systematic Test Case Generation for Advanced Driver Assistance Systems in Virtual Environments

  • Fabian Schuldt
  • Andreas Reschka
  • Markus Maurer
Chapter

Abstract

In this chapter, a method for an efficient, systematic test case generation for the test of advanced driver assistance systems in virtual environments is presented. The method is one of four steps in a systematic test process. These four steps are (1) analysis of the system, (2) test case generation, (3) test execution, and (4) test evaluation. The analysis serves to identify factors that have an impact to the system. The aim of the test case generation is to discretize value-continuous parameters into equivalence classes and to reduce the number of test cases for necessary test coverage. The test case generation uses combinatorial algorithms to achieve this objective. A test case is generated based on a 4-level model, which consists of the road network, adjustments for special situations, dynamic elements, and environmental conditions. To generate reproducible test cases, a special control for dynamic elements is introduced to adapt the behavior of dynamic elements to non-deterministic target elements. The test case generation is presented in a case study of a constriction assist. The test evaluation is used to verify the system and to replay test cases or important factors to the previous steps of the test concept.

Keywords

Systematic test case generation 4 level scenario model Virtual environments Combinatorial test case generation Automated driving functions 

Notes

Acknowledgments

Special thanks to Kathrin Symkenberg for her support by the generation of dynamic scenarios in the efficient test case generation.

References

  1. Ammann, P., Jeff, O.: Introduction to Software Testing. Cambridge University Press, New York (2008)CrossRefMATHGoogle Scholar
  2. Bock, T.: Vehicle in the loop – Test- und Simulationsumgebung für Fahrerassistenzsysteme. PhD Dissertation, Technische Universität München, INITUM (2008)Google Scholar
  3. Bock, T., Maurer, M., Färber, G.: Validation of the vehicle in the loop (VIL) – a milestone for the simulation of driver assistance systems. In: Proceedings of the Intelligent Vehicles Symposium (IV), Istanbul, Turkey, pp. 612–617 (2007)Google Scholar
  4. Cohen, D., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: an approach to testing based on combinatorial design. Trans. Softw. Eng. 23(7), 437–444 (1997)CrossRefGoogle Scholar
  5. Cohen, M.B., Gibbons, P.B., Mugridge, W.B., Colbourn, C.J.: Constructing test suites for interaction testing. In: Proceedings of International Conference on Software Engineering, Portland, OR, pp. 38–48 (2003)Google Scholar
  6. Eltaher, A.: Human-like test systems: a cognitive-oriented approach applied to infotainment devices. PhD Dissertation, Technische Universität Braunschweig, Shaker Verlag (2013)Google Scholar
  7. FGSV: Richtlinien für die Markierung von Straßen, Forschungsgesellschaft für Strassen- und Verkehrswesen. Arbeitsgruppe, FGSV Verlag, Köln (1980)Google Scholar
  8. FGSV: Richtlinien für die Anlage von Straßen Teil Linienführung RAS-L, Forschungsgesellschaft für Straßen- und Verkehrswesen. Arbeitsgruppe, FGSV Verlag, Köln (1995)Google Scholar
  9. FGSV: Richtlinien für die Anlage von Straßen Teil Linienführung RAS-Q 96, Forschungsgesellschaft für Straßen- und Verkehrswesen. Arbeitsgruppe, FGSV Verlag, Köln (1996)Google Scholar
  10. FGSV: Richtlinien für die Anlage von Stadtstraßen, Forschungsgesellschaft für Straßen- und Verkehrswesen. Arbeitsgruppe, FGSV Verlag, Köln (2006)Google Scholar
  11. FGSV: Richtlinien für die Anlage von Autobahnen, Forschungsgesellschaft für Straßen- und Verkehrswesen. Arbeitsgruppe, FGSV Verlag, Köln (2008)Google Scholar
  12. FGSV: Richtlinien für die Sicherung von Arbeitsstellen an Straßen, Forschungsgesellschaft für Straßen- und Verkehrswesen. Arbeitsgruppe, FGSV Verlag, Köln (2009)Google Scholar
  13. Geyer, S., Baltzer, M., Franz, B., Hakuli, S., Kauer, M., Kienle, M., Meier, S., Weißgerber, T., Bengler, K., Bruder, R., Flemisch, F., Winner, H.: Concept and development of a unified ontology for generating test and use-case catalogues for assisted and automated vehicle guidance. IET Intell. Transp. Syst. 8(3), 183–189 (2014)CrossRefGoogle Scholar
  14. Gietelink, O.J., Ploeg, J., De Schutter, B., Verhaegen, M.: VEHIL: test facility for fault management testing of advanced driver assistance systems. In: Proceedings of the 10th ITS World Congress, Salerno, Italy, pp. 397–402 (2003)Google Scholar
  15. Grindal, M., Offutt, J., Andler, S.F.: Combination testing strategies: a survey. Softw. Test. Verif. Reliab. 15(3), 167–199 (2005)CrossRefGoogle Scholar
  16. Hendriks, F., Pelders, R., Tideman, M.: Future testing of active safety systems. SAE Int. J. Passeng. Cars - Electron. Electr. Syst. 3(2), 170–175 (2010)CrossRefGoogle Scholar
  17. Hilf, K.D., Matheis, I., Mauss, J., Rauh, J.: Automated simulation of scenarios to guide the development of a crosswind stabilization function. In: 6th IFAC Symposium Advances in Automotive Control, Munich, Germany, pp. 751–756 (2010)Google Scholar
  18. ISO 22179: Intelligent Transport Systems – Full Speed Range Adaptive Cruise Control (FSRA) Systems – Performance Requirements and Test Procedures. ISO, Geneva (2009)Google Scholar
  19. ISO 15622: Intelligent Transport Systems – Adaptive Cruise Control Systems – Performance Requirements and Test Procedures. ISO, Geneva (2010)Google Scholar
  20. ISO 26262: Road Vehicles – Functional Safety. ISO, Geneva (2011)Google Scholar
  21. ISO 11270: Intelligent Transport Systems – Lane Keeping Assistance Systems (LKAS) – Performance Requirements and Test Procedures. ISO, Geneva (2014)Google Scholar
  22. Kuhn, D.R., Wallace, D.R., Gallo Jr., A.M.: Software fault interactions and implications for software testing. IEEE Trans. Softw. Eng. 30(6), 418–421 (2004)CrossRefGoogle Scholar
  23. Lei, Y., Kacker, R., Kuhn, D.R., Okun, V., Lawrence, J.: IPOG/IPOG-D: efficient test generation for multi-way combinatorial testing. Softw. Test. Verif. Reliab. 18(3), 125–148 (2008)CrossRefGoogle Scholar
  24. Liggesmeyer, P.: Software-Qualität. Spektrum-Verlag, Heidelberg (2009)CrossRefMATHGoogle Scholar
  25. Lindlar, F.: Modellbasierter evolutionärer Funktionstest. PhD dissertation, Technische Universität Berlin (2012)Google Scholar
  26. Nie, C., Leung, H.: A survey of combinatorial testing. ACM Comput. Surv. 43(2), 1–29 (2011)CrossRefMATHGoogle Scholar
  27. Rook, P.: Controlling software projects. Softw. Eng. J. 1(1), S.7–S.16 (1986)CrossRefGoogle Scholar
  28. Schmidt, F.: Funktionale Absicherung kamerabasierter Aktiver Fahrerassistenzsysteme durch Hardware-in-the-Loop-Tests. PhD Dissertation, Technische Universität Kaiserslautern (2012)Google Scholar
  29. Scholl, W.: URBAN Homepage, Urbaner Raum: Benutzergerechte Assistenzsysteme und Netzmanagement (2015). Accessed 30 Mar 2015Google Scholar
  30. Schuldt, F., Menzel, T., Maurer, M.: Eine Methode für die Zuordnung von Testfällen für automatisierte Fahrfunktionen auf X-in-the-Loop Simulationen im modularen virtuellen Testbaukasten. In: Workshop Fahrerassistenzsysteme, Walting, Germany, pp. 171–182 (2015)Google Scholar
  31. Shiba, T., Tsuchiya, T., Kikuno, T. Using artificial life techniques to generate test cases for combinatorial testing. In: Proceedings of the Computer Software and Applications Conference (COMPSAC), Hong Kong, China, pp. 72–77 (2004)Google Scholar
  32. Siebertz, K., van Bebber, D., Hochkirchen, T.: Statistische Versuchsplanung. Springer Science & Business Media, Berlin (2010)CrossRefGoogle Scholar
  33. Sommerville, I.: Software Engineering, 8th edn. Addison-Wesley, Harlow (2007)MATHGoogle Scholar
  34. Symkenberg, K.: Entwicklung und Implementierung eines Frameworks zur systematischen Gestaltung und Variation von dynamischen Szenarien zur Testung von Fahrerassistenzsystemen. Masterthesis, Universität Hannover (2015)Google Scholar
  35. Taguchi, G., Chowdhury, S., Wu, Y.: Introduction to the quality loss function. In: Taguchi, G., Chowdhury, S., Wu, Y. (eds.) Taguchi’s Quality Engineering Handbook. Wiley, Hoboken, NJ (2007)Google Scholar
  36. Ulbrich, S., Menzel, T., Reschka, A., Schuldt, F., Maurer, M.: (2015) Defining and Substantiating the terms scene, situation and scenario for automated driving. In: Proceedings of Intelligent Transportation Systems (ITSC), Las Palmas, Spain (2015)Google Scholar
  37. Verhoeff, L., Verburg, D.J., Lupker, H.A., Kusters, L.J.J.: VEHIL: a full-scale test methodology for intelligent transport systems, vehicles and subsystems. In: Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Dearborn, USA, pp. 369–375 (2000)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Fabian Schuldt
    • 1
  • Andreas Reschka
    • 2
  • Markus Maurer
    • 2
  1. 1.MeinersenGermany
  2. 2.Institut für RegelungstechnikBraunschweigGermany

Personalised recommendations