Skip to main content

A Method for an Efficient, Systematic Test Case Generation for Advanced Driver Assistance Systems in Virtual Environments

  • Chapter
  • First Online:
Automotive Systems Engineering II

Abstract

In this chapter, a method for an efficient, systematic test case generation for the test of advanced driver assistance systems in virtual environments is presented. The method is one of four steps in a systematic test process. These four steps are (1) analysis of the system, (2) test case generation, (3) test execution, and (4) test evaluation. The analysis serves to identify factors that have an impact to the system. The aim of the test case generation is to discretize value-continuous parameters into equivalence classes and to reduce the number of test cases for necessary test coverage. The test case generation uses combinatorial algorithms to achieve this objective. A test case is generated based on a 4-level model, which consists of the road network, adjustments for special situations, dynamic elements, and environmental conditions. To generate reproducible test cases, a special control for dynamic elements is introduced to adapt the behavior of dynamic elements to non-deterministic target elements. The test case generation is presented in a case study of a constriction assist. The test evaluation is used to verify the system and to replay test cases or important factors to the previous steps of the test concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In German: Urbaner Raum: Benutzergerechte Assistenzsystem und Netzmanagement (Urban Space: User oriented assistance systems and network management).

References

  • Ammann, P., Jeff, O.: Introduction to Software Testing. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  • Bock, T.: Vehicle in the loop – Test- und Simulationsumgebung für Fahrerassistenzsysteme. PhD Dissertation, Technische Universität München, INITUM (2008)

    Google Scholar 

  • Bock, T., Maurer, M., Färber, G.: Validation of the vehicle in the loop (VIL) – a milestone for the simulation of driver assistance systems. In: Proceedings of the Intelligent Vehicles Symposium (IV), Istanbul, Turkey, pp. 612–617 (2007)

    Google Scholar 

  • Cohen, D., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: an approach to testing based on combinatorial design. Trans. Softw. Eng. 23(7), 437–444 (1997)

    Article  Google Scholar 

  • Cohen, M.B., Gibbons, P.B., Mugridge, W.B., Colbourn, C.J.: Constructing test suites for interaction testing. In: Proceedings of International Conference on Software Engineering, Portland, OR, pp. 38–48 (2003)

    Google Scholar 

  • Eltaher, A.: Human-like test systems: a cognitive-oriented approach applied to infotainment devices. PhD Dissertation, Technische Universität Braunschweig, Shaker Verlag (2013)

    Google Scholar 

  • FGSV: Richtlinien für die Markierung von Straßen, Forschungsgesellschaft für Strassen- und Verkehrswesen. Arbeitsgruppe, FGSV Verlag, Köln (1980)

    Google Scholar 

  • FGSV: Richtlinien für die Anlage von Straßen Teil Linienführung RAS-L, Forschungsgesellschaft für Straßen- und Verkehrswesen. Arbeitsgruppe, FGSV Verlag, Köln (1995)

    Google Scholar 

  • FGSV: Richtlinien für die Anlage von Straßen Teil Linienführung RAS-Q 96, Forschungsgesellschaft für Straßen- und Verkehrswesen. Arbeitsgruppe, FGSV Verlag, Köln (1996)

    Google Scholar 

  • FGSV: Richtlinien für die Anlage von Stadtstraßen, Forschungsgesellschaft für Straßen- und Verkehrswesen. Arbeitsgruppe, FGSV Verlag, Köln (2006)

    Google Scholar 

  • FGSV: Richtlinien für die Anlage von Autobahnen, Forschungsgesellschaft für Straßen- und Verkehrswesen. Arbeitsgruppe, FGSV Verlag, Köln (2008)

    Google Scholar 

  • FGSV: Richtlinien für die Sicherung von Arbeitsstellen an Straßen, Forschungsgesellschaft für Straßen- und Verkehrswesen. Arbeitsgruppe, FGSV Verlag, Köln (2009)

    Google Scholar 

  • Geyer, S., Baltzer, M., Franz, B., Hakuli, S., Kauer, M., Kienle, M., Meier, S., Weißgerber, T., Bengler, K., Bruder, R., Flemisch, F., Winner, H.: Concept and development of a unified ontology for generating test and use-case catalogues for assisted and automated vehicle guidance. IET Intell. Transp. Syst. 8(3), 183–189 (2014)

    Article  Google Scholar 

  • Gietelink, O.J., Ploeg, J., De Schutter, B., Verhaegen, M.: VEHIL: test facility for fault management testing of advanced driver assistance systems. In: Proceedings of the 10th ITS World Congress, Salerno, Italy, pp. 397–402 (2003)

    Google Scholar 

  • Grindal, M., Offutt, J., Andler, S.F.: Combination testing strategies: a survey. Softw. Test. Verif. Reliab. 15(3), 167–199 (2005)

    Article  Google Scholar 

  • Hendriks, F., Pelders, R., Tideman, M.: Future testing of active safety systems. SAE Int. J. Passeng. Cars - Electron. Electr. Syst. 3(2), 170–175 (2010)

    Article  Google Scholar 

  • Hilf, K.D., Matheis, I., Mauss, J., Rauh, J.: Automated simulation of scenarios to guide the development of a crosswind stabilization function. In: 6th IFAC Symposium Advances in Automotive Control, Munich, Germany, pp. 751–756 (2010)

    Google Scholar 

  • ISO 22179: Intelligent Transport Systems – Full Speed Range Adaptive Cruise Control (FSRA) Systems – Performance Requirements and Test Procedures. ISO, Geneva (2009)

    Google Scholar 

  • ISO 15622: Intelligent Transport Systems – Adaptive Cruise Control Systems – Performance Requirements and Test Procedures. ISO, Geneva (2010)

    Google Scholar 

  • ISO 26262: Road Vehicles – Functional Safety. ISO, Geneva (2011)

    Google Scholar 

  • ISO 11270: Intelligent Transport Systems – Lane Keeping Assistance Systems (LKAS) – Performance Requirements and Test Procedures. ISO, Geneva (2014)

    Google Scholar 

  • Kuhn, D.R., Wallace, D.R., Gallo Jr., A.M.: Software fault interactions and implications for software testing. IEEE Trans. Softw. Eng. 30(6), 418–421 (2004)

    Article  Google Scholar 

  • Lei, Y., Kacker, R., Kuhn, D.R., Okun, V., Lawrence, J.: IPOG/IPOG-D: efficient test generation for multi-way combinatorial testing. Softw. Test. Verif. Reliab. 18(3), 125–148 (2008)

    Article  Google Scholar 

  • Liggesmeyer, P.: Software-Qualität. Spektrum-Verlag, Heidelberg (2009)

    Book  MATH  Google Scholar 

  • Lindlar, F.: Modellbasierter evolutionärer Funktionstest. PhD dissertation, Technische Universität Berlin (2012)

    Google Scholar 

  • Nie, C., Leung, H.: A survey of combinatorial testing. ACM Comput. Surv. 43(2), 1–29 (2011)

    Article  MATH  Google Scholar 

  • Rook, P.: Controlling software projects. Softw. Eng. J. 1(1), S.7–S.16 (1986)

    Article  Google Scholar 

  • Schmidt, F.: Funktionale Absicherung kamerabasierter Aktiver Fahrerassistenzsysteme durch Hardware-in-the-Loop-Tests. PhD Dissertation, Technische Universität Kaiserslautern (2012)

    Google Scholar 

  • Scholl, W.: URBAN Homepage, Urbaner Raum: Benutzergerechte Assistenzsysteme und Netzmanagement (2015). Accessed 30 Mar 2015

    Google Scholar 

  • Schuldt, F., Menzel, T., Maurer, M.: Eine Methode für die Zuordnung von Testfällen für automatisierte Fahrfunktionen auf X-in-the-Loop Simulationen im modularen virtuellen Testbaukasten. In: Workshop Fahrerassistenzsysteme, Walting, Germany, pp. 171–182 (2015)

    Google Scholar 

  • Shiba, T., Tsuchiya, T., Kikuno, T. Using artificial life techniques to generate test cases for combinatorial testing. In: Proceedings of the Computer Software and Applications Conference (COMPSAC), Hong Kong, China, pp. 72–77 (2004)

    Google Scholar 

  • Siebertz, K., van Bebber, D., Hochkirchen, T.: Statistische Versuchsplanung. Springer Science & Business Media, Berlin (2010)

    Book  Google Scholar 

  • Sommerville, I.: Software Engineering, 8th edn. Addison-Wesley, Harlow (2007)

    MATH  Google Scholar 

  • Symkenberg, K.: Entwicklung und Implementierung eines Frameworks zur systematischen Gestaltung und Variation von dynamischen Szenarien zur Testung von Fahrerassistenzsystemen. Masterthesis, Universität Hannover (2015)

    Google Scholar 

  • Taguchi, G., Chowdhury, S., Wu, Y.: Introduction to the quality loss function. In: Taguchi, G., Chowdhury, S., Wu, Y. (eds.) Taguchi’s Quality Engineering Handbook. Wiley, Hoboken, NJ (2007)

    Google Scholar 

  • Ulbrich, S., Menzel, T., Reschka, A., Schuldt, F., Maurer, M.: (2015) Defining and Substantiating the terms scene, situation and scenario for automated driving. In: Proceedings of Intelligent Transportation Systems (ITSC), Las Palmas, Spain (2015)

    Google Scholar 

  • Verhoeff, L., Verburg, D.J., Lupker, H.A., Kusters, L.J.J.: VEHIL: a full-scale test methodology for intelligent transport systems, vehicles and subsystems. In: Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Dearborn, USA, pp. 369–375 (2000)

    Google Scholar 

Download references

Acknowledgments

Special thanks to Kathrin Symkenberg for her support by the generation of dynamic scenarios in the efficient test case generation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Schuldt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schuldt, F., Reschka, A., Maurer, M. (2018). A Method for an Efficient, Systematic Test Case Generation for Advanced Driver Assistance Systems in Virtual Environments. In: Winner, H., Prokop, G., Maurer, M. (eds) Automotive Systems Engineering II. Springer, Cham. https://doi.org/10.1007/978-3-319-61607-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61607-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61605-6

  • Online ISBN: 978-3-319-61607-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics