Methods for Change Management in Automotive Release Processes

Chapter

Abstract

The handling of changes in automotive release processes is a fundamental challenge of today’s development projects. This chapter examines strategies for the identification of the effects of changes and evaluates concepts for the estimation of resulting retest effort. It is determined that there exists no approach that is applicable for large systems at vehicle level and that allows a reliable selection of all tests necessary to analyze the impact of the change. To solve this problem, two general concepts for test selection techniques are proposed. Inclusion-based approaches identify tests from the set of not executed tests whereas exclusion-based approaches eliminate tests from the set of performed tests. The two concepts are compared via receiver operating characteristic and cost estimation. Furthermore, the exclusion-based test selection is described in detail. It offers the opportunity to reduce the automotive release effort without drawbacks in test quality.

Keywords

Test selection Change management Automotive release process Inclusion Exclusion Development process Validation Retest 

References

  1. Aigner, J.: Zur zuverlässigen Beurteilung von Fahrzeugen. Automobiltechnische Zeitschrift (ATZ). 84(9), 447–450 (1982)Google Scholar
  2. Albers, A.: Vorwort zu Band 47 der Forschungsberichte des Instituts für Produktentwicklung, Karlsruhe (2010)Google Scholar
  3. AUTOSAR (AUTomotive Open System ARchitecture): http://www.autosar.org (2014)
  4. Borgeest, K.: Elektronik in der Fahrzeugtechnik. Vieweg+Teubner Verlag, Wiesbaden (2008)Google Scholar
  5. Briand, L.C., Labiche, Y., He, S.: Automating regression test selection based on UML designs. ACM Trans. Softw. Eng. Methodol. 51, 16–30 (2009)Google Scholar
  6. Broy, M.: Challenges in automotive software engineering. In: Proceedings of the International Conference on Software Engineering (ICSE), Shanghai (2006)Google Scholar
  7. Broy, M., Reichart, G., Rothhardt, L.: Architekturen softwarebasierter Funktionen im Fahrzeug: von den Anforderungen zur Umsetzung. Informatik-Spektrum. 34(1), 42–59 (2011)CrossRefGoogle Scholar
  8. Burgdorf, F.: Eine kunden- und lebenszyklusorientierte Produktfamilienabsicherung in der Automobilindustrie. Dissertation, Karlsruher Institut für Technologie. KIT Scientific Publishing, Karlsruhe (2010)Google Scholar
  9. Caliebe, P., Herpel, T., German, R.: Dependency-based test case selection and prioritization in embedded systems. In: 5th International Conference on Software Testing, Verification and Validation (ICST), Montreal (2012)Google Scholar
  10. Chittimalli, P.K., Harrold, M.J.: Regression test selection on system requirements. In: India Software Engineering Conference (2008)Google Scholar
  11. Clarkson, P.J., Simons, C., Eckert, C.: Predicting change propagation in complex design. In: Proceedings of ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC, Pittsburgh (2001)Google Scholar
  12. Cohen, T., Navathe, S.B., Fulton, R.E.: C-FAR, change favorable representation. Comput. Aided Des. 32, 321–328 (2000)CrossRefGoogle Scholar
  13. Drummond, C., Holte, R.C.: Explicitly representing expected cost: an alternative to roc representation. In: Proceedings of the 6th International Conference on Knowledge Discovery and Data Mining, pp. 155–164 (2000)Google Scholar
  14. Düser, T.: X-in-the-Loop – ein durchgängiges Validierungsframework für die Fahrzeugentwicklung am Beispiel von Antriebsstrangfunktionen und Fahrerassistenzsystemen. Karlsruher Institut für Technologie, Forschungsberichte des IPEK – Institut für Produktentwicklung (2010)Google Scholar
  15. Eckert, C., Clarkson, P.J., Zanker, W.: Change and customization in complex engineering domains. Res. Eng. Des. 15, 1–21 (2004)CrossRefGoogle Scholar
  16. Eppinger, S.D., Whitney, D.E., Smith, R.P., Gebala, D.A.: A model-based method for organizing tasks in product development. Res. Eng. Des. 1–13 (1994)Google Scholar
  17. Economic Commission for Europe of the United Nations: ECE R13 H: Uniform provisions concerning the approval of passenger cars with regard to braking (2015)Google Scholar
  18. Flanagan, T.L., Eckert, C., Smith, J., Eger, T., Clarkson, P.J.: A functional analysis of change propagation. In: Proceedings of the 14th International Conference on Engineering Design (ICED’03), Stockholm (2003)Google Scholar
  19. Fürst, S.: Challenges in the design of automotive software. In: Proceedings of the Conference on Design, Automation and Test in Europe (DATE), Dresden (2010)Google Scholar
  20. Gallagher, K., Hall, T., Black, S.: Reducing regression test size by exclusion. International Conference on Software Maintenance, IEEE, pp. 154–163 (2007)Google Scholar
  21. Gorthi, R.P., Pasala, A., Chanduka, K.K.P., Leong, B.: Specification-based approach to select regression test suite to validate changed software. In: 15th Asia-Pacific Software Engineering Conference (2008)Google Scholar
  22. Gustavsson, H.: Architecting automotive product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010, LNCS 6287, pp. 92–105. Springer Verlag, Berlin (2010)Google Scholar
  23. Holzmann, H., Hahn, K.M., Webb, J., Mies, O.: Simulationsbasierte ESP-Homologation für Pkw. Automobiltechnische Zeitschrift ATZ, Ausgabe 09/2012, pp. 698–702 (2012)Google Scholar
  24. International Automotive Task Force: IATF 16949: Quality management system requirements for automotive production and relevant service parts organizations (2016)Google Scholar
  25. International Organization for Standardization: ISO 26262: Road vehicles – Functional Safety (2011)Google Scholar
  26. Jarratt, T., Eckert, C.M., Clarkson, P.J.: Development of a product model to support engineering change management. In: Proceedings of the TCME 2004, Lausanne (2004)Google Scholar
  27. Kaner, C.: Improving the maintainability of automated test suites. In: Proceedings of Quality Week (1997)Google Scholar
  28. Keller, R., Eger, T., Eckert, C.M., Clarkson, P.J.: Visualizing change propagation. International Conference on Engineering Design (ICED’05), Melbourne (2005)Google Scholar
  29. Khan, S., Rehman, O., Malik, S.: The impact of test case reduction and prioritization on software testing effectiveness. In: International Conference on Emerging Technologies, ICET, pp. 416–421 (2009)Google Scholar
  30. Kim, J., Porter, A., Rothermel, G.: An empirical study of regression test application frequency. In: Software Testing, Verification and Reliability, vol. 15, pp. 257–279 (2005)Google Scholar
  31. Kohn, W.: Statistik – Datenanalyse und Wahrscheinlichkeitsrechnung. Springer, Berlin (2005)MATHGoogle Scholar
  32. Kvasnicka, P., Prokop, G., Dörle, M., Rettinger, A., Stahl, H.: Durchgängige Simulationsumgebung zur Entwicklung und Absicherung von fahrdynamischen Regelsystemen. In: Berechnung und Simulation im Fahrzeugbau, Würzburg, VDI-Berichte 1976, pp. 387–404, VDI-Verlag, Düsseldorf (2006)Google Scholar
  33. Langermann, R.: Beitrag zur durchgängigen Simulationsunterstützung im Entwicklungsprozess von Flugzeugsystemen. Dissertation, TU Braunschweig (2008)Google Scholar
  34. Lehnert, S.: A review of software change impact analysis. TU Ilmenau, Report ilm1-2011200618 (2011)Google Scholar
  35. Leung, H., White, L.: A study of integration testing and software regression at the integration level. In: Microsoft Research (Eds.) – TechReport MSR-TR-2005-94 (2005)Google Scholar
  36. Mao, Y., Wiessalla, J., Meier, J., Risse, W., Mathot, G., Blum, M.: CAE supported ESC development/release process. In: Proceedings of the FISITA 2012 World Automotive Congress (2012)Google Scholar
  37. Muccini, H., Dias, M., Richardson, D.J.: Software architecture-based regression testing. J. Syst. Softw. 79(10), 1379–1396 (2006)CrossRefGoogle Scholar
  38. National Highway Traffic Safety Administration (NHTSA): Federal Motor Vehicle Safety Standard (FMVSS) No. 126: Electronic Stability Control Systems (2007)Google Scholar
  39. Nörenberg, R.: Effizienter Regressionstest von E/E-Systemen nach ISO 26262. Dissertation, Karlsruher Institut für Technologie (KIT). KIT Scientific Publishing, Karlsruhe (2012)Google Scholar
  40. Object Mangament Group (OMG): Unified Modeling Language (UML). http://www.uml.org/ (2014)
  41. Raffaeli, R., Germani, M., Graziosi, S., Mandorli, F.: Development of a multilayer change propagation tool for modular products. In: International Conference on Engineering Design, ICED, Paris (2007)Google Scholar
  42. Rausch, A., Broy, M.: Die V-Modell XT Grundlagen. In: Höhn, R., Höppner, S. (eds.) Das V-Modell XT, pp. 1–27. Springer, Berlin (2008)Google Scholar
  43. Reif, K.: Automobilelektronik. ATZ/MTZ-Fachbuch. Vieweg Verlag, Wiesbaden (2007)Google Scholar
  44. Reuter, A.: Produkthaftung in Deutschland. In: Werdich, M. (ed.) FMEA – Einführung und Moderation. Vieweg+Teubner Verlag, Wiesbaden (2011)Google Scholar
  45. Rothermel, G., Harrold, M.J.: Analyzing regression test selection techniques. IEEE Trans. Softw. Eng. 22(8), 529–551 (1996)CrossRefGoogle Scholar
  46. Rothermel, G., Harrold, M.: Empirical studies of a safe regression test selection technique. IEEE Trans. Softw. Eng. 24, 401–419 (1998)CrossRefGoogle Scholar
  47. Rothermel, G., Harrold, M.J., von Ronne, J., Hong, C.: Empirical studies of test-suite reduction. J. Softw. Testing Verification Reliability. 12(4), 219–249 (2002)CrossRefGoogle Scholar
  48. Schäuffele, J., Zurawka, T.: Automotive Software Engineering. Vieweg Verlag, Wiesbaden (2003)CrossRefGoogle Scholar
  49. Singer, C.: Entwicklung von Testauswahlmethoden für die Absicherung von Änderungen auf Gesamtfahrzeugebene. VDI Fortschritt-Berichte, Reihe 12, Nr. 798. VDI-Verlag, Düsseldorf (2016)Google Scholar
  50. Steward, D.: The design structure system: a method for managing the design of complex systems. IEEE Trans. Eng. Manag. EM-28(3), 71–74 (1981)CrossRefGoogle Scholar
  51. Sundmark, D., Petersen, K., Larsson, S.: An exploratory case study of testing in an automotive electrical system release process. In: Proceedings of the 6th IEEE International Symposium on Industrial Embedded Systems (SIES), Västerås (2011)Google Scholar
  52. Tan, P.-N.: Receiver operating characteristic. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 2349–2352. Springer, New York, NY (2009)Google Scholar
  53. Ungermann, J.: Zuverlässigkeitsnachweis und Zuverlässigkeitsentwicklung in der Gesamtfahrzeugerprobung. Dissertation, ETH Zürich (2009)Google Scholar
  54. VDA QMC: Automotive SPICE Process Assessment/Reference Model v3.0 (2015)Google Scholar
  55. Vokolos, F., Frankl, P.: Pythia: a regression test selection tool based on text differencing. In: Proceedings of the International Conference on Reliability, Quality, and Safety of Software Intensive Systems (1997)Google Scholar
  56. Yazdanshenas, A.R., Moonen, L.: Fine-grained change impact analysis for component-based product families. In: International Conference on Software Maintenance (ICSM), IEEE (2012)Google Scholar
  57. Zhao, O., Yan, H., Xiang, L., Xu, B.: Change impact analysis to support architectural evolution. J. Softw. Maintenance Res. Pract. – Special Issue: Separation of Concerns for Software Evolution 317–333 (2002)Google Scholar
  58. Zheng, J., Robinson, B., William, L., Smiley, K.: An initial study of a lightweight process for change identification and regression test selection when source code is not available. In: 16th International Symposium on Software Reliability Engineering (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.BaiersdorfGermany

Personalised recommendations