Advertisement

Design of Ride Comfort Characteristics on Subsystem Level in the Product Development Process

  • Christian Angrick
  • Günther Prokop
  • Peter Knauer
Chapter

Abstract

In the automotive development process the significance of full vehicle ride comfort is becoming more important. Due to rising complexity and new boundary conditions upcoming in the development process, like a higher variety of models, higher functional demands, and decreasing development times, the design of respective ride comfort characteristics in early phases of the development is desirable. The necessity for a precisely defined and structured process is therefore increasing. In driving dynamics already a high progress is achieved in defining a respective process, which can be essentially attributed to the application of a subsystem level in the derivation of vehicle properties. In ride comfort however, the progress is less advanced, as no comparable subsystem methods or models exist. Therefore in the following the focus lies specifically on the integration of a subsystem level in the derivation process of vehicle properties from full vehicle to components. For that purpose, initially the automotive development process will be illustrated in its general structure and its specific realization in driving dynamics and ride comfort. The advantages and disadvantages of the respective disciplines will be emphasized. Furthermore the structure of subsystem models in ride comfort as well as associated concept parameters are introduced. In consideration of the new methodology, the integration within the automotive development process is illustrated and examples are given. Finally the findings of the investigation are summarized and the advantages of the methodology are emphasized.

Keywords

Automotive Ride comfort Subsystem Development process Simulation Target cascading Derivation process Concept model Evaluation Driving dynamics 

References

  1. Albrecht, M., Albers, A.: Einsatz Künstlicher Neuronaler Netze zur objektiven Beurteilung des Schwingungskomforts am Beispiel des automatisierten Anfahrens. In: Humanschwingungen, VDI-Berichte 1821. VDI Verlag GmbH, Düsseldorf (2004)Google Scholar
  2. Angrick, C., Prokop, G., Knauer, P., Wagner, A.: Improved prediction of ride comfort characteristics by considering suspension friction in the automotive development process. In: chassis.tech plus – 6. Internationales Münchner Fahrwerk-Symposium, München (2015)Google Scholar
  3. Bindauf, A., Angrick, C., Prokop, G.: Fahrwerkscharakterisierung an einem hochdynamischen Achsprüfstand. ATZ. December, 76–81 (2014)Google Scholar
  4. Bock, T., Maurer, M., van Meel, F., Müller, T.: Vehicle in the Loop – Ein innovativer Ansatz zur Kopplung virtueller mit realer Erprobung. ATZ. 110, 10–16 (2008)Google Scholar
  5. Braess, H.-H., Seiffert, U.: Handbuch Kraftfahrzeugtechnik, 6th edn. Vieweg+Teubner, Wiesbaden (2011)Google Scholar
  6. Cucuz, S.: Schwingempfindung von Pkw-Insassen: Auswirkung von stochastischen Unebenheiten und Einzelhindernissen der realen Fahrbahn. Dissertation, TU Braunschweig (1993)Google Scholar
  7. Decker, M.: Zur Beurteilung der Querdynamik von Personenkraftwagen. Dissertation, TU München (2009)Google Scholar
  8. Einsle, S., Fritzsche, C.: Utilization of objective tyre characteristics in the chassis development process. In: chassis.tech plus – 4. Internationales Münchner Fahrwerk-Symposium, München (2013)Google Scholar
  9. Gillespie, T.: Fundamentals of Vehicle Dynamics, 1st edn. SAE International, Warrendale (1992)CrossRefGoogle Scholar
  10. Hab, G., Wagner, R.: Projektmanagement in der Automobilindustrie, 4th edn. Springer Gabler, Wiesbaden (2013)CrossRefGoogle Scholar
  11. Heißing, B., Brandl, H.-J.: Subjektive Beurteilung des Fahrverhaltens, 1st edn. Vogel, Würzburg (2002)Google Scholar
  12. Heißing, B., Ersoy, M., Gies, S.: Fahrwerkhandbuch, 3rd edn. Springer-Vieweg, Wiesbaden (2011)CrossRefGoogle Scholar
  13. Hennecke, D.: Zur Bewertung des Schwingungskomforts von Pkw bei instationären Anregungen. Dissertation, Technische Universität Carolo-Wilhelmina zu Braunschweig (1994)Google Scholar
  14. Holdmann, P., Köhn, P., Möller, B., Willems, R.: Suspension kinematics and compliance – measuring and simulation. SAE technical paper 980897 (1998). doi: 10.4271/980897
  15. Klingner, B.: Einfluss der Motorlagerung auf Schwingungskomfort und Geräuschanregung im Kraftfahrzeug. Dissertation, TU Braunschweig (1996)Google Scholar
  16. Matschinsky, W.: Radführungen der Straßenfahrzeuge, 3rd edn. Springer, Berlin (2007)Google Scholar
  17. Mitschke, M., Wallentowitz, H.: Dynamik der Kraftfahrzeuge, 5th edn. Springer Vieweg, Wiesbaden (2014)Google Scholar
  18. Nakahara, J., Minakawa, M., Gipser, M., Wimmer, J.: A modelling approach to suspension friction. AutoTechnology. 1(3), 54–56 (2001). doi: 10.1007/BF03246609 Google Scholar
  19. Pacejka, H.: Tyre and Vehicle Dynamics, 2nd edn. Butterwort-Heinemann, Oxford (2006)MATHGoogle Scholar
  20. Rauh, J.: Virtual development of ride and handling characteristics for advanced passenger cars. Veh. Syst. Dyn. 40(1–3), 135–155 (2003). doi: 10.1076/vesd.40.1.135.15876 CrossRefGoogle Scholar
  21. Schimmel, C.: Entwicklung eines fahrerbasierten Werkzeugs zur Objektivierung subjektiver Fahreindrücke. Dissertation, TU München (2010)Google Scholar
  22. Seiffert, U., Rainer, G.: Virtuelle Produktentstehung für Fahrzeug und Antrieb im Kfz, 1st edn. Vieweg+Teubner, Wiesbaden (2008)CrossRefGoogle Scholar
  23. Stammen, K., Meywerk, M.: Anwendbarkeit künstlicher neuronaler Netze auf die Bewertung des Schwingungskomforts im Kraftfahrzeug – Eine Untersuchung im Rahmen der virtuellen Fahrzeugentwicklung. In: Humanschwingungen, VDI-Berichte 2002. VDI Verlag GmbH, Düsseldorf (2007)Google Scholar
  24. Yabuta, K., Hidaka, K., Fukushima, N.: Effects of suspension friction on vehicle riding comfort. Veh. Syst. Dyn. 10(2–3), 85–91 (1981)CrossRefGoogle Scholar
  25. Zegelaar, P.: The dynamic response of tyres to brake torque variations and road unevennesses. Dissertation, TU Delft (1998)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Christian Angrick
    • 1
    • 2
  • Günther Prokop
    • 2
  • Peter Knauer
    • 1
  1. 1.IngolstadtGermany
  2. 2.TU Dresden, Institut für Automobiltechnik Dresden - IAD, Lehrstuhl für KraftfahrzeugtechnikDresdenGermany

Personalised recommendations