Skip to main content

Design of Ride Comfort Characteristics on Subsystem Level in the Product Development Process

  • Chapter
  • First Online:

Abstract

In the automotive development process the significance of full vehicle ride comfort is becoming more important. Due to rising complexity and new boundary conditions upcoming in the development process, like a higher variety of models, higher functional demands, and decreasing development times, the design of respective ride comfort characteristics in early phases of the development is desirable. The necessity for a precisely defined and structured process is therefore increasing. In driving dynamics already a high progress is achieved in defining a respective process, which can be essentially attributed to the application of a subsystem level in the derivation of vehicle properties. In ride comfort however, the progress is less advanced, as no comparable subsystem methods or models exist. Therefore in the following the focus lies specifically on the integration of a subsystem level in the derivation process of vehicle properties from full vehicle to components. For that purpose, initially the automotive development process will be illustrated in its general structure and its specific realization in driving dynamics and ride comfort. The advantages and disadvantages of the respective disciplines will be emphasized. Furthermore the structure of subsystem models in ride comfort as well as associated concept parameters are introduced. In consideration of the new methodology, the integration within the automotive development process is illustrated and examples are given. Finally the findings of the investigation are summarized and the advantages of the methodology are emphasized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In this context, the automotive development process indicates the time frame in which a platform or vehicle project is completely developed, beginning at the definition of the product and ending at the Start-of-Production (short: SOP).

  2. 2.

    Throughout this paper driving dynamics mainly refers to lateral dynamics respectively to the cornering behavior of the vehicle.

  3. 3.

    For example, this can be the necessity of defining bushing stiffnesses to simulate with an multi-body component model, while the axle concept is still unknown in the early phase of the process.

  4. 4.

    Support angle means the angle defining the amount of vertical force which occurs due to longitudinal or lateral forces on a suspension, predominantly defined by its kinematics.

  5. 5.

    In this context cross-term means parameters not lying on the main diagonal of the transfer matrix and defining the reaction of the system in another degree of freedom than in the direction of the excitation, which correlates with support angles.

  6. 6.

    The wheel-based stiffness due to bushings is usually called secondary spring rate, probably being mainly dependent on the torsional stiffness of bushings.

  7. 7.

    Analogue to the secondary spring rate this effect will be called secondary damping rate.

  8. 8.

    OEM: Original equipment manufacturer; corresponding to the common definition in the automobile sector, the term OEM means manufacturers of vehicles, selling them under their own brand.

References

  • Albrecht, M., Albers, A.: Einsatz Künstlicher Neuronaler Netze zur objektiven Beurteilung des Schwingungskomforts am Beispiel des automatisierten Anfahrens. In: Humanschwingungen, VDI-Berichte 1821. VDI Verlag GmbH, Düsseldorf (2004)

    Google Scholar 

  • Angrick, C., Prokop, G., Knauer, P., Wagner, A.: Improved prediction of ride comfort characteristics by considering suspension friction in the automotive development process. In: chassis.tech plus – 6. Internationales Münchner Fahrwerk-Symposium, München (2015)

    Google Scholar 

  • Bindauf, A., Angrick, C., Prokop, G.: Fahrwerkscharakterisierung an einem hochdynamischen Achsprüfstand. ATZ. December, 76–81 (2014)

    Google Scholar 

  • Bock, T., Maurer, M., van Meel, F., Müller, T.: Vehicle in the Loop – Ein innovativer Ansatz zur Kopplung virtueller mit realer Erprobung. ATZ. 110, 10–16 (2008)

    Google Scholar 

  • Braess, H.-H., Seiffert, U.: Handbuch Kraftfahrzeugtechnik, 6th edn. Vieweg+Teubner, Wiesbaden (2011)

    Google Scholar 

  • Cucuz, S.: Schwingempfindung von Pkw-Insassen: Auswirkung von stochastischen Unebenheiten und Einzelhindernissen der realen Fahrbahn. Dissertation, TU Braunschweig (1993)

    Google Scholar 

  • Decker, M.: Zur Beurteilung der Querdynamik von Personenkraftwagen. Dissertation, TU München (2009)

    Google Scholar 

  • Einsle, S., Fritzsche, C.: Utilization of objective tyre characteristics in the chassis development process. In: chassis.tech plus – 4. Internationales Münchner Fahrwerk-Symposium, München (2013)

    Google Scholar 

  • Gillespie, T.: Fundamentals of Vehicle Dynamics, 1st edn. SAE International, Warrendale (1992)

    Book  Google Scholar 

  • Hab, G., Wagner, R.: Projektmanagement in der Automobilindustrie, 4th edn. Springer Gabler, Wiesbaden (2013)

    Book  Google Scholar 

  • Heißing, B., Brandl, H.-J.: Subjektive Beurteilung des Fahrverhaltens, 1st edn. Vogel, Würzburg (2002)

    Google Scholar 

  • Heißing, B., Ersoy, M., Gies, S.: Fahrwerkhandbuch, 3rd edn. Springer-Vieweg, Wiesbaden (2011)

    Book  Google Scholar 

  • Hennecke, D.: Zur Bewertung des Schwingungskomforts von Pkw bei instationären Anregungen. Dissertation, Technische Universität Carolo-Wilhelmina zu Braunschweig (1994)

    Google Scholar 

  • Holdmann, P., Köhn, P., Möller, B., Willems, R.: Suspension kinematics and compliance – measuring and simulation. SAE technical paper 980897 (1998). doi:10.4271/980897

  • Klingner, B.: Einfluss der Motorlagerung auf Schwingungskomfort und Geräuschanregung im Kraftfahrzeug. Dissertation, TU Braunschweig (1996)

    Google Scholar 

  • Matschinsky, W.: Radführungen der Straßenfahrzeuge, 3rd edn. Springer, Berlin (2007)

    Google Scholar 

  • Mitschke, M., Wallentowitz, H.: Dynamik der Kraftfahrzeuge, 5th edn. Springer Vieweg, Wiesbaden (2014)

    Google Scholar 

  • Nakahara, J., Minakawa, M., Gipser, M., Wimmer, J.: A modelling approach to suspension friction. AutoTechnology. 1(3), 54–56 (2001). doi:10.1007/BF03246609

    Google Scholar 

  • Pacejka, H.: Tyre and Vehicle Dynamics, 2nd edn. Butterwort-Heinemann, Oxford (2006)

    MATH  Google Scholar 

  • Rauh, J.: Virtual development of ride and handling characteristics for advanced passenger cars. Veh. Syst. Dyn. 40(1–3), 135–155 (2003). doi:10.1076/vesd.40.1.135.15876

    Article  Google Scholar 

  • Schimmel, C.: Entwicklung eines fahrerbasierten Werkzeugs zur Objektivierung subjektiver Fahreindrücke. Dissertation, TU München (2010)

    Google Scholar 

  • Seiffert, U., Rainer, G.: Virtuelle Produktentstehung für Fahrzeug und Antrieb im Kfz, 1st edn. Vieweg+Teubner, Wiesbaden (2008)

    Book  Google Scholar 

  • Stammen, K., Meywerk, M.: Anwendbarkeit künstlicher neuronaler Netze auf die Bewertung des Schwingungskomforts im Kraftfahrzeug – Eine Untersuchung im Rahmen der virtuellen Fahrzeugentwicklung. In: Humanschwingungen, VDI-Berichte 2002. VDI Verlag GmbH, Düsseldorf (2007)

    Google Scholar 

  • Yabuta, K., Hidaka, K., Fukushima, N.: Effects of suspension friction on vehicle riding comfort. Veh. Syst. Dyn. 10(2–3), 85–91 (1981)

    Article  Google Scholar 

  • Zegelaar, P.: The dynamic response of tyres to brake torque variations and road unevennesses. Dissertation, TU Delft (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Angrick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Angrick, C., Prokop, G., Knauer, P. (2018). Design of Ride Comfort Characteristics on Subsystem Level in the Product Development Process. In: Winner, H., Prokop, G., Maurer, M. (eds) Automotive Systems Engineering II. Springer, Cham. https://doi.org/10.1007/978-3-319-61607-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61607-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61605-6

  • Online ISBN: 978-3-319-61607-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics