Skip to main content

Managerial Compensation, Investment Decisions, and Truthfully Reporting

  • Chapter
  • First Online:
Game Theory in Management Accounting

Part of the book series: Contributions to Management Science ((MANAGEMENT SC.))

  • 1899 Accesses

Abstract

This paper provides a formal analysis of investment decisions with special emphasis to mechanisms which induce managers to reveal their knowledge truthfully. In a one-period context ‘knowledge’ usually means the profit ratio. In a multi-period setting ‘knowledge’ is referred to the (multivariate) cash flow stream or the (univariate) net present value. Both situations are analysed in the paper. We start with the basic case ‘one firm, one manager’ and continue with the case ‘divisional firm, division managers’. With respect to the first case, we criticise two approaches (Rogerson, JPolE 105(4):770–795, 1997; Reichelstein, RAS 2(2):157–180, 1997) and develop a solution based on extended incentive contracts. To tackle the second case, we analyse pros and cons of Groves schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bamberg G (1991) Extended contractual incentives to reduce project cost. OR Spectr 13(2):95–98

    Article  Google Scholar 

  • Bamberg G, Trost R (1998) Anreizsysteme und kapitalmarktorientierte Unternehmenssteuerung. In: Möller HP, Schmidt F (eds) Rechnungswesen als Instrument für Führungsentscheidungen. Schäffer-Poeschel, Stuttgart, pp 91–109

    Google Scholar 

  • Bamberg G, Coenenberg AG, Krapp M (2013) Betriebswirtschaftliche Entscheidungslehre, 15th edn. Vahlen, München

    Google Scholar 

  • Groves T (1976) Incentive compatible control of decentralized organizations. In: Ho YC, Mitters SK (eds) Directions in large-scale systems: many person optimization and dezentralized control. Plenum Press, New York, pp 149–185

    Chapter  Google Scholar 

  • Grottke M, Schosser J (2014) Goal congruence and preference similarity between principal and agent with differing time horizons – setting incentives under risk. GEABA Discussion Paper DP 14–29

    Google Scholar 

  • Holmström B, Milgrom PR (1987) Aggregation and linearity in the provision of intertemporal incentives. Econometrica 55(2):303–328

    Article  Google Scholar 

  • Locarek H, Bamberg G (1994) Anreizkompatible Allokationsmechanismen für divisionalisierte Unternehmungen. Wirtschaftswissenschaftliches Studium 23(1):10–14

    Google Scholar 

  • Lücke W (1955) Investitionsrechnung auf der Basis von Ausgaben oder Kosten? Zeitschrift für handelswissenschaftliche Forschung/N. F. 7(3):310–324

    Google Scholar 

  • Preinreich GAD (1937) Valuation and amortization. TAR 12(3):209–226

    Google Scholar 

  • Reichelstein S (1997) Investment decisions and managerial performance evaluation. RAS 2(2):157–180

    Google Scholar 

  • Reichelstein H-E, Reichelstein S (1987) Leistungsanreize bei öffentlichen Aufträgen. Zeitschrift für Wehrtechnik 19(3):44–49

    Google Scholar 

  • Rogerson WP (1997) Intertemporal cost allocation and managerial investment incentives: a theory explaining the use of economic value added as a performance measure. JPolE 105(4):770–795

    Google Scholar 

  • Spremann K (1987) Agent and principal. In: Bamberg G, Spremann K (eds) Agency theory, information, and incentives. Springer, Berlin, pp 3–37

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Krapp .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Proof of Theorem5.1

Proof

‘ ⇒ ’: Assume (2) holds true. Since this condition covers all possible cash flow streams, it also applies to non-stochastic streams x. Therefore, CE(x + z) needs to be independent of the specific value of z. In particular, it is allowed to determine z so that all components of x + z except the first one, x 0z 0, are set to zero, i.e. z t = (−x t+1 + z t+1) ⋅ γ for all t = 0, 1, , T − 1.

Following the recursion

$$\displaystyle{ \begin{array}{l@{\,\,}c@{\,\,}l@{\,\,}c@{\,\,}l} z_{T-1}\,\,& =\,\,& - x_{T}\cdot \gamma \,\, \\ z_{T-2}\,\,& =\,\,& - (-x_{T-1} + z_{T-1})\cdot \gamma \,\,& =\,\,& - x_{T-1} \cdot \gamma -x_{T} \cdot \gamma \,^{2} \\ z_{T-3}\,\,& =\,\,& - (-x_{T-2} + z_{T-2})\cdot \gamma \,\,& =\,\,& - x_{T-2} \cdot \gamma -x_{T-1} \cdot \gamma \,^{2} - x_{T} \cdot \gamma \,^{3}\\ \,\, & \,\, &\ldots \\ z_{0} \,\,& =\,\,& - (-x_{1} + z_{1})\cdot \gamma \,\,& =\,\,& - x_{1} \cdot \gamma -x_{2} \cdot \gamma \,^{2}\cdots - x_{T} \cdot \gamma \,^{T} \end{array} }$$
(37)

one arrives at x 0z 0 = NPV (x). Therefore, the certainty equivalents CE(x + z) and CE(NPV (x), 0, , 0) coincide. Assuming (2) holds true, this implies CE(x) = CE(NPV (x), 0, , 0), stating the indifference x ∼ (NPV (x), 0, , 0). Since x is non-stochastic, the structure asserted in (3) follows immediately.

‘ ⇐ ’: Assume the structure asserted in (3) applies to the multiattributive utility function . Then, the date 0 certainty equivalent CE(c + z) is implicitly given by

$$\displaystyle{ \begin{array}{l@{\,\,}c@{\,\,}l} u(\mathit{CE}(\mathbf{c} + \mathbf{z}),0,\ldots,0)\,\,& =\,\,&\mathrm{E}u(\mathbf{c} + \mathbf{z}) =\mathrm{ E}u(\mathit{NPV }(\mathbf{c} + \mathbf{z}),0,\ldots,0) \\ \,\,& =\,\,&\mathrm{E}u(\mathit{NPV }(\mathbf{c}) + \mathit{NPV }(\mathbf{z}),0,\ldots,0)\,. \end{array} }$$
(38)

Since

$$\displaystyle\begin{array}{rcl} \mathit{NPV }(\mathbf{z})& =& -z_{0} + \frac{qz_{0} - z_{1}} {q} + \frac{qz_{1} - z_{2}} {q^{2}} +\ldots +\frac{qz_{T-2} - z_{T-1}} {q^{T-1}} + \frac{qz_{T-1}} {q^{T}} \\ & =& -z_{0} + z_{0} -\frac{z_{1}} {q} + \frac{z_{1}} {q} -\frac{z_{2}} {q^{2}} + \cdots + \frac{z_{T-2}} {q^{T-2}} -\frac{z_{T-1}} {q^{T-1}} + \frac{z_{T-1}} {q^{T-1}} = 0\;,\quad \quad {}\end{array}$$
(39)

CE(c + z) does not depend on z and, hence, condition (2) is fulfilled. □

1.2 Proof of Theorem5.2

Proof

Evaluating the shift in equity capital from period t − 1 to period t, EC t EC t−1, one immediately arrives at

$$\displaystyle{ \mathit{EC}_{t} -\mathit{EC}_{t-1} = \mathit{NI}_{t} - c_{t}\;\Longleftrightarrow\;\mathit{NI}_{t} = c_{t} + \mathit{EC}_{t} -\mathit{EC}_{t-1}\,. }$$
(40)

Hence, the sum of discounted residual incomes can be written as

$$\displaystyle{ \begin{array}{@{}r@{\,\,}c@{\,\,}l@{}} \sum _{t=0}^{T}\mathit{RI}_{ t} \cdot \gamma \,^{t}\,\,& =\,\,&\sum _{ t=0}^{T}(c_{ t} + \mathit{EC}_{t} -\mathit{EC}_{t-1} - r \cdot \mathit{EC}_{t-1}) \cdot \gamma \,^{t} \\ \,\,& =\,\,&\sum _{t=0}^{T}c_{ t} \cdot \gamma \,^{t} +\sum _{ t=0}^{T}\mathit{EC}_{ t} \cdot \gamma \,^{t} -\sum _{ t=0}^{T}q\mathit{EC}_{ t-1} \cdot \gamma \,^{t} \\ \,\,& =\,\,&\sum _{t=0}^{T}c_{ t} \cdot \gamma \,^{t} +\sum _{ t=0}^{T}\mathit{EC}_{ t} \cdot \gamma \,^{t} -\sum _{ t=0}^{T}\mathit{EC}_{ t-1} \cdot \gamma \,^{t-1} \\ \,\,& =\,\,&\sum _{t=0}^{T}c_{ t} \cdot \gamma \,^{t} + \mathit{EC}_{ T} \cdot \gamma \,^{T}. \end{array} }$$
(41)

Taking RI 0 = EC T = 0 into account, (5) follows immediately. □

1.3 Proof of Property 5.1

Proof

Resolving the recursion, one arrives at

$$\displaystyle{ d_{t} =\zeta ^{-1}\cdot \bigg[c_{ t}+\sum _{j=1}^{t-1}c_{ j}\cdot \sum _{i=1}^{t-j}\Big(\begin{array}{@{}c@{}} t - j - 1 \\ i - 1 \end{array} \Big)\cdot r^{i}\bigg]-\sum _{ i=1}^{t}\Big(\begin{array}{@{}c@{}} t - 1 \\ i - 1 \end{array} \Big)\cdot r^{i}\,, }$$
(42)

where

$$\displaystyle{ \zeta =\sum _{ j=1}^{T}c_{ j} \cdot \gamma \,^{j}\,. }$$
(43)

Please note

$$\displaystyle{ \sum _{i=1}^{t-j}\Big(\begin{array}{@{}c@{}} t - j - 1 \\ i - 1 \end{array} \Big)\cdot r^{i} = r\cdot (1+r)^{t-j-1} = (1-\gamma )\cdot \gamma \,^{j-t} }$$
(44)

and

$$\displaystyle{ \sum _{i=1}^{t}\Big(\begin{array}{@{}c@{}} t - 1 \\ i - 1 \end{array} \Big)\cdot r^{i} = r\cdot (1+r)^{t-1} = (1-\gamma )\cdot \gamma \,^{-t}\,. }$$
(45)

Hence, (42) can be rewritten as follows

$$\displaystyle{ \begin{array}{@{}r@{\,\,}c@{\,\,}l@{}} d_{t}\,\,& =\,\,&\zeta ^{-1}\bigg[c_{ t} - (1-\gamma ) \cdot \gamma \,^{-t} \cdot \zeta +(1-\gamma ) \cdot \sum _{ j=1}^{t-1}c_{ j} \cdot \gamma \,^{j-t}\bigg] \\ \,\,& =\,\,&\zeta ^{-1}\bigg[\gamma \cdot c_{ t} - (1-\gamma ) \cdot \gamma \,^{-t} \cdot \zeta +(1-\gamma ) \cdot \sum _{ j=1}^{t}c_{ j} \cdot \gamma \,^{j-t}\bigg]\,. \end{array} }$$
(46)

We are now able to evaluate the sum

$$\displaystyle\begin{array}{rcl} \sum _{t=1}^{T}d_{ t}& =& \zeta ^{-1} \cdot \bigg [\gamma \cdot \sum _{ t=1}^{T}c_{ t} - (1-\gamma ) \cdot \zeta \cdot \sum _{t=1}^{T}\gamma ^{-t} + (1-\gamma ) \cdot \sum _{ t=1}^{T}\sum _{ j=1}^{t}c_{ j} \cdot \gamma \,^{j-t}\bigg] \\ & =& \zeta ^{-1} \cdot \bigg [\gamma \cdot \sum _{ t=1}^{T}c_{ t} + (1 -\gamma ^{-T}) \cdot \zeta +(1-\gamma ) \cdot \sum _{ t=1}^{T}\sum _{ j=1}^{t}c_{ j} \cdot \gamma \,^{j-t}\bigg] \\ & =& 1 +\zeta ^{-1} \cdot \bigg [\sum _{ t=1}^{T}c_{ t} \cdot (\gamma -\gamma \,^{t-T}) + (1-\gamma ) \cdot \sum _{ t=1}^{T}\sum _{ j=1}^{t}c_{ j} \cdot \gamma \,^{j-t}\bigg]\,. {}\end{array}$$
(47)

In order to prove d 1 + + d T = 1 it is sufficient to verify that the term in square brackets is equal to zero. Since

$$\displaystyle{ \sum _{t=1}^{T}\sum _{ j=1}^{t}c_{ j} \cdot \gamma ^{j-t} =\sum _{ t=1}^{T}c_{ t} \cdot \sum _{j=0}^{T-t}\gamma ^{-j} =\sum _{ t=1}^{T}c_{ t} \cdot \frac{\gamma \,^{t-T}-\gamma } {1-\gamma } }$$
(48)

this is in fact the case. □

1.4 Proof of Theorem5.3

Proof

Since

$$\displaystyle\begin{array}{rcl} \sum _{t=1}^{\tau }\mathit{RI}_{ t} \cdot \gamma \,^{t}& =& \sum _{ t=1}^{\tau }\bigg[c_{ t} + d_{t} \cdot c_{0} + r \cdot c_{0} \cdot \bigg (1 -\sum _{j=1}^{t-1}d_{ j}\bigg)\bigg] \cdot \gamma \,^{t} \\ & =& \sum _{t=1}^{\tau }\Bigg[c_{ t} +\mathop{\underbrace{ c_{0} \cdot \frac{c_{t}} {\sum \limits _{j=1}^{T}c_{j}\cdot \gamma ^{j}} - r \cdot c_{0} \cdot \bigg (1 -\sum _{j=1}^{t-1}d_{j}\bigg)}}\limits _{=d_{t}\cdot c_{0}} + r \cdot c_{0} \cdot \bigg (1 -\sum _{j=1}^{t-1}d_{ j}\bigg)\Bigg] \cdot \gamma \,^{t} \\ & =& \sum _{t=1}^{\tau }\Bigg[c_{ t} + c_{0} \cdot \frac{c_{t}} {\sum \limits _{j=1}^{T}c_{j} \cdot \gamma ^{j}}\Bigg] \cdot \gamma \,^{t} =\sum _{ t=1}^{\tau }\Bigg[1 + \frac{c_{0}} {\sum \limits _{j=1}^{T}c_{j} \cdot \gamma ^{j}}\Bigg] \cdot c_{t} \cdot \gamma \,^{t} \\ & =& \frac{1} {\sum \limits _{j=1}^{T}c_{j} \cdot \gamma ^{j}} \cdot \sum _{t=1}^{\tau }\Bigg[c_{ 0} +\sum _{ j=1}^{T}c_{ j} \cdot \gamma ^{j}\Bigg] \cdot c_{ t} \cdot \gamma \,^{t} = \frac{\sum \limits _{t=1}^{\tau }c_{ t} \cdot \gamma \,^{t}} {\sum \limits _{j=1}^{T}c_{j} \cdot \gamma ^{j}} \cdot \mathit{NPV }\,, {}\end{array}$$
(49)

manager’s present value of remuneration and the investment project’s NPV have the same sign as long as c 1 > 0, , c T > 0. The latter is ensured when condition (18) is met. □

1.5 Proof of Theorem5.4

Proof

Since

$$\displaystyle\begin{array}{rcl} \mathrm{E}\bigg(\sum _{t=1}^{\tau }\mathit{RI}_{ t} \cdot \gamma \,^{t}\bigg)& =& \sum _{ t=1}^{\tau }\mathrm{E}(\mathit{RI}_{ t}) \cdot \gamma \,^{t} =\sum _{ t=1}^{\tau }\mathrm{E}\bigg[c_{ t} + d_{t} \cdot c_{0} + r \cdot c_{0} \cdot \bigg (1 -\sum _{j=1}^{t-1}d_{ j}\bigg)\bigg] \cdot \gamma \,^{t} \\ & =& \sum _{t=1}^{\tau }\mathrm{E}\Bigg[c_{ t} +\mathop{\underbrace{ c_{0} \cdot \frac{\mathrm{E}(c_{t})} {\sum \limits _{j=1}^{T}\mathrm{E}(c_{j})\cdot \gamma ^{j}} - r \cdot c_{0} \cdot \bigg (1 -\sum _{j=1}^{t-1}d_{j}\bigg)}}\limits _{=d_{t}\cdot c_{0}} + r \cdot c_{0} \cdot \bigg (1 -\sum _{j=1}^{t-1}d_{ j}\bigg)\Bigg] \cdot \gamma \,^{t} \\ & =& \sum _{t=1}^{\tau }\mathrm{E}\Bigg[c_{ t} + c_{0} \cdot \frac{\mathrm{E}(c_{t})} {\sum \limits _{j=1}^{T}\mathrm{E}(c_{j}) \cdot \gamma ^{j}}\Bigg] \cdot \gamma \,^{t} =\sum _{ t=1}^{\tau }\Bigg[1 + \frac{c_{0}} {\sum \limits _{j=1}^{T}\mathrm{E}(c_{j}) \cdot \gamma ^{j}}\Bigg] \cdot \mathrm{ E}(c_{t}) \cdot \gamma \,^{t} \\ & =& \frac{1} {\sum \limits _{j=1}^{T}\mathrm{E}(c_{j}) \cdot \gamma ^{j}} \cdot \sum _{t=1}^{\tau }\Bigg[c_{ 0} +\sum _{ j=1}^{T}\mathrm{E}(c_{ j}) \cdot \gamma ^{j}\Bigg] \cdot \mathrm{ E}(c_{ t}) \cdot \gamma \,^{t} \\ & =& \frac{\sum \limits _{t=1}^{\tau }\mathrm{E}(c_{t}) \cdot \gamma \,^{t}} {\sum \limits _{j=1}^{T}\mathrm{E}(c_{j}) \cdot \gamma ^{j}} \cdot \mathrm{ E}(\mathit{NPV })\,, {}\end{array}$$
(50)

manager’s expected present value of remuneration and the investment project’s expected NPV have the same sign as long as E(c 1) > 0, , E(c T ) > 0. The latter is ensured when condition (20) is met. □

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Bamberg, G., Krapp, M. (2018). Managerial Compensation, Investment Decisions, and Truthfully Reporting. In: Mueller, D., Trost, R. (eds) Game Theory in Management Accounting. Contributions to Management Science. Springer, Cham. https://doi.org/10.1007/978-3-319-61603-2_5

Download citation

Publish with us

Policies and ethics