Advertisement

Constructions Involving Involutary Semirings and Rings

  • Friedrich Wehrung
Chapter
  • 493 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 2188)

Abstract

The axioms of ring theory, when deprived of the existence of additive inverses, yield the axioms of semirings. When endowed with an additional involutary anti-automorphism (we will talk about involutary semirings), semirings will enjoy quite a fruitful interaction with Boolean inverse semigroups, the basic idea being to have the multiplications agree and the inversion map correspond to the involution.

Bibliography

  1. 1.
    Abrams, G., Aranda Pino, G.: The Leavitt path algebra of a graph. J. Algebra 293(2), 319–334 (2005). MR 2172342 (2007b:46085)Google Scholar
  2. 2.
    Abrams, G., Aranda Pino, G.: The Leavitt path algebras of arbitrary graphs. Houst. J. Math. 34(2), 423–442 (2008). MR 2417402 (2009h:16043)Google Scholar
  3. 7.
    Ara, P., Exel, R.: Dynamical systems associated to separated graphs, graph algebras, and paradoxical decompositions. Adv. Math. 252, 748–804 (2014). MR 3144248Google Scholar
  4. 9.
    Ara, P., Goodearl, K.R.: Leavitt path algebras of separated graphs. J. Reine Angew. Math. 669, 165–224 (2012). MR 2980456Google Scholar
  5. 14.
    Ara, P., Moreno, M.A., Pardo, E.: Nonstable K-theory for graph algebras. Algebr. Represent. Theory 10(2), 157–178 (2007). MR 2310414 (2008b:46094)Google Scholar
  6. 16.
    Ash, C.J., Hall, T.E.: Inverse semigroups on graphs. Semigroup Forum 11(2), 140–145 (1975/1976). MR 0387449 (52 #8292)Google Scholar
  7. 31.
    Cohn, P.M.: On the free product of associative rings. Math. Z. 71, 380–398 (1959). MR 0106918 (21 #5648)Google Scholar
  8. 36.
    Duncan, J., Paterson, A.L.T.: C -algebras of inverse semigroups. Proc. Edinb. Math. Soc. (2) 28(1), 41–58 (1985). MR 785726 (86h:46090)Google Scholar
  9. 40.
    Exel, R.: Inverse semigroups and combinatorial C -algebras. Bull. Braz. Math. Soc. (N.S.) 39(2), 191–313 (2008). MR 2419901Google Scholar
  10. 42.
    Exel, R.: Reconstructing a totally disconnected groupoid from its ample semigroup. Proc. Am. Math. Soc. 138(8), 2991–3001 (2010). MR 2644910Google Scholar
  11. 46.
    Foster, A.L.: The idempotent elements of a commutative ring form a Boolean algebra; ring-duality and transformation theory. Duke Math. J. 12, 143–152 (1945). MR 0012264 (7,1c)Google Scholar
  12. 60.
    Howie, J.M.: An Introduction to Semigroup Theory. London Mathematical Society Monographs, vol. 7. Academic/Harcourt Brace Jovanovich Publishers, London/New York (1976). MR 0466355 (57 #6235)Google Scholar
  13. 62.
    Jones, D.G., Lawson, M.V.: Graph inverse semigroups: their characterization and completion. J. Algebra 409, 444–473 (2014). MR 3198850Google Scholar
  14. 75.
    Lawson, M.V.: Non-commutative Stone duality: inverse semigroups, topological groupoids and C -algebras. Int. J. Algebra Comput. 22(6), 1250058, 47 pp. (2012). MR 2974110Google Scholar
  15. 83.
    Mesyan, Z., Mitchell, J.D., Morayne, M., Péresse, Y.H.: Topological graph inverse semigroups (2013). arXiv 1306.5388, version 1Google Scholar
  16. 93.
    Paterson, A.L.T.: Groupoids, Inverse Semigroups, and Their Operator Algebras. Progress in Mathematics, vol. 170. Birkhäuser Boston, Inc., Boston, MA (1999). MR 1724106 (2001a:22003)Google Scholar
  17. 104.
    Steinberg, B.: A groupoid approach to discrete inverse semigroup algebras. Adv. Math. 223(2), 689–727 (2010). MR 2565546 (2010k:20113)Google Scholar
  18. 105.
    Steinberg, B.: Simplicity, primitivity and semiprimitivity of étale groupoid algebras with applications to inverse semigroup algebras (2014). arXiv 1408.6014, version 1Google Scholar
  19. 121.
    Wehrung, F.: Tensor products of structures with interpolation. Pac. J. Math. 176(1), 267–285 (1996). MR 1433994 (98e:06010)Google Scholar
  20. 122.
    Wehrung, F.: The dimension monoid of a lattice. Algebra Univers. 40(3), 247–411 (1998). MR 1668068 (2000i:06014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Friedrich Wehrung
    • 1
  1. 1.Département de MathématiquesUniversité de Caen NormandieCaenFrance

Personalised recommendations