Advertisement

Partial Commutative Monoids

  • Friedrich Wehrung
Chapter
  • 536 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 2188)

Abstract

Many constructions of commutative monoids start with a set P endowed with a partial addition ⊕. The partial structure (P, ⊕) is then extended to a full commutative monoid, which works then as the “enveloping monoid of P”. Although this process has been mostly studied in case P satisfies the refinement axiom (this originates in Tarski [109]), the initial part of the work does not require that axiom.

Bibliography

  1. 11.
    Ara, P., Pardo, E.: Refinement monoids with weak comparability and applications to regular rings and C -algebras. Proc. Am. Math. Soc. 124(3), 715–720 (1996). MR 1301484 (96f:46124)Google Scholar
  2. 13.
    Ara, P., Goodearl, K.R., O’Meara, K.C., Pardo, E.: Separative cancellation for projective modules over exchange rings. Israel J. Math. 105, 105–137 (1998). MR 1639739 (99g:16006)Google Scholar
  3. 25.
    Brookfield, G.J.: Monoids and categories of Nœtherian modules. ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.). University of California, Santa Barbara (1997). MR 2696168Google Scholar
  4. 27.
    Chang, C.C.: Algebraic analysis of many valued logics. Trans. Am. Math. Soc. 88, 467–490 (1958). MR 0094302 (20 #821)Google Scholar
  5. 28.
    Chen, H.: On separative refinement monoids. Bull. Korean Math. Soc. 46(3), 489–498 (2009). MR 2522861 (2010f:20060)Google Scholar
  6. 29.
    Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Trends in Logic—Studia Logica Library, vol. 7. Kluwer Academic Publishers, Dordrecht (2000). MR 1786097 (2001j:03114)Google Scholar
  7. 32.
    Dobbertin, H.: On Vaught’s criterion for isomorphisms of countable Boolean algebras. Algebra Univers. 15(1), 95–114 (1982). MR 663956 (83m:06017)Google Scholar
  8. 37.
    Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Mathematics and its Applications, vol. 516. Kluwer Academic Publishers/Ister Science, Dordrecht/Bratislava (2000). MR 1861369 (2002h:81021)Google Scholar
  9. 45.
    Fillmore, P.A.: On sums of projections. J. Funct. Anal. 4, 146–152 (1969). MR 0246150 (39 #7455)Google Scholar
  10. 47.
    Foulis, D.J., Bennett, M.K.: Effect algebras and unsharp quantum logics. Found. Phys. 24(10), 1331–1352 (1994). Special issue dedicated to Constantin Piron on the occasion of his sixtieth birthday. MR 1304942 (95k:06020)Google Scholar
  11. 49.
    Goodearl, K.R.: Partially Ordered Abelian Groups with Interpolation. Mathematical Surveys and Monographs, vol. 20. American Mathematical Society, Providence, RI (1986). MR 845783 (88f:06013)Google Scholar
  12. 50.
    Goodearl, K.R.: von Neumann Regular Rings, 2nd edn. Robert E. Krieger Publishing Co., Inc., Malabar, FL (1991). MR 1150975 (93m:16006)Google Scholar
  13. 54.
    Greechie, R.J.: Orthomodular lattices admitting no states. J. Combin. Theory Ser. A 10, 119–132 (1971). MR 0274355 (43 #120)Google Scholar
  14. 59.
    Hewitt, E., Zuckerman, H.S.: The l 1-algebra of a commutative semigroup. Trans. Am. Math. Soc. 83(1), 70–97 (1956). MR 0081908 (18,465b)Google Scholar
  15. 65.
    Kalmbach, G.: Orthomodular Lattices. London Mathematical Society Monographs, vol. 18. Academic/Harcourt Brace Jovanovich Publishers, London/New York (1983). MR 716496 (85f:06012)Google Scholar
  16. 81.
    McCune, W.: Prover9 and Mace4 [computer software], 2005–2010Google Scholar
  17. 86.
    Mundici, D.: Interpretation of AF C -algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65(1), 15–63 (1986). MR 819173 (87k:46146)Google Scholar
  18. 89.
    Navara, M.: An orthomodular lattice admitting no group-valued measure. Proc. Am. Math. Soc. 122(1), 7–12 (1994). MR 1191871 (94k:06007)Google Scholar
  19. 95.
    Rabanovich, V.I., Samoĭlenko, Y.S.: Scalar operators representable as a sum of projectors. Ukraïn. Mat. Zh. 53(7), 939–952 (2001). MR 2031291 (2004i:47073)Google Scholar
  20. 96.
    Rainone, T.: Finiteness and paradoxical decompositions in C*-dynamical systems (2015). arXiv 1502.06153, version 1Google Scholar
  21. 109.
    Tarski, A.: Cardinal Algebras. With an Appendix: Cardinal Products of Isomorphism Types, by Bjarni Jónsson and Alfred Tarski. Oxford University Press, New York, NY (1949). MR 0029954 (10,686f)Google Scholar
  22. 114.
    Vaught, R.L.: Topics in the theory of arithmetical classes and Boolean algebras. ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.). University of California, Berkeley (1955). MR 2938637Google Scholar
  23. 117.
    Weber, H.: There are orthomodular lattices without nontrivial group-valued states: a computer-based construction. J. Math. Anal. Appl. 183(1), 89–93 (1994). MR 1273434 (95e:06026)Google Scholar
  24. 118.
    Wehrung, F.: Injective positively ordered monoids. I. J. Pure Appl. Algebra 83(1), 43–82 (1992). MR 1190444 (93k:06023)Google Scholar
  25. 121.
    Wehrung, F.: Tensor products of structures with interpolation. Pac. J. Math. 176(1), 267–285 (1996). MR 1433994 (98e:06010)Google Scholar
  26. 122.
    Wehrung, F.: The dimension monoid of a lattice. Algebra Univers. 40(3), 247–411 (1998). MR 1668068 (2000i:06014)Google Scholar
  27. 123.
    Wehrung, F.: Embedding simple commutative monoids into simple refinement monoids. Semigroup Forum 56(1), 104–129 (1998). MR 1490558 (99b:20092)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Friedrich Wehrung
    • 1
  1. 1.Département de MathématiquesUniversité de Caen NormandieCaenFrance

Personalised recommendations