Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2188))

  • 932 Accesses

Abstract

Many constructions of commutative monoids start with a set P endowed with a partial addition ⊕. The partial structure (P, ⊕) is then extended to a full commutative monoid, which works then as the “enveloping monoid of P”. Although this process has been mostly studied in case P satisfies the refinement axiom (this originates in Tarski [109]), the initial part of the work does not require that axiom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The terminology “multiple-free” is borrowed from Tarski [109].

  2. 2.

    Although those modifications might not be, strictly speaking, necessary, I feel that they provide a slightly better presentation than the one of my earlier paper [121], while at the same time gently introducing the reader to those concepts about tensor products of commutative monoids necessary to follow all parts of the present work.

Bibliography

  1. Ara, P., Pardo, E.: Refinement monoids with weak comparability and applications to regular rings and C -algebras. Proc. Am. Math. Soc. 124(3), 715–720 (1996). MR 1301484 (96f:46124)

    Google Scholar 

  2. Ara, P., Goodearl, K.R., O’Meara, K.C., Pardo, E.: Separative cancellation for projective modules over exchange rings. Israel J. Math. 105, 105–137 (1998). MR 1639739 (99g:16006)

    Google Scholar 

  3. Brookfield, G.J.: Monoids and categories of Nœtherian modules. ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.). University of California, Santa Barbara (1997). MR 2696168

    Google Scholar 

  4. Chang, C.C.: Algebraic analysis of many valued logics. Trans. Am. Math. Soc. 88, 467–490 (1958). MR 0094302 (20 #821)

    Google Scholar 

  5. Chen, H.: On separative refinement monoids. Bull. Korean Math. Soc. 46(3), 489–498 (2009). MR 2522861 (2010f:20060)

    Google Scholar 

  6. Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Trends in Logic—Studia Logica Library, vol. 7. Kluwer Academic Publishers, Dordrecht (2000). MR 1786097 (2001j:03114)

    Google Scholar 

  7. Dobbertin, H.: On Vaught’s criterion for isomorphisms of countable Boolean algebras. Algebra Univers. 15(1), 95–114 (1982). MR 663956 (83m:06017)

    Google Scholar 

  8. Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Mathematics and its Applications, vol. 516. Kluwer Academic Publishers/Ister Science, Dordrecht/Bratislava (2000). MR 1861369 (2002h:81021)

    Google Scholar 

  9. Fillmore, P.A.: On sums of projections. J. Funct. Anal. 4, 146–152 (1969). MR 0246150 (39 #7455)

    Google Scholar 

  10. Foulis, D.J., Bennett, M.K.: Effect algebras and unsharp quantum logics. Found. Phys. 24(10), 1331–1352 (1994). Special issue dedicated to Constantin Piron on the occasion of his sixtieth birthday. MR 1304942 (95k:06020)

    Google Scholar 

  11. Goodearl, K.R.: Partially Ordered Abelian Groups with Interpolation. Mathematical Surveys and Monographs, vol. 20. American Mathematical Society, Providence, RI (1986). MR 845783 (88f:06013)

    Google Scholar 

  12. Goodearl, K.R.: von Neumann Regular Rings, 2nd edn. Robert E. Krieger Publishing Co., Inc., Malabar, FL (1991). MR 1150975 (93m:16006)

    Google Scholar 

  13. Greechie, R.J.: Orthomodular lattices admitting no states. J. Combin. Theory Ser. A 10, 119–132 (1971). MR 0274355 (43 #120)

    Google Scholar 

  14. Hewitt, E., Zuckerman, H.S.: The l 1-algebra of a commutative semigroup. Trans. Am. Math. Soc. 83(1), 70–97 (1956). MR 0081908 (18,465b)

    Google Scholar 

  15. Kalmbach, G.: Orthomodular Lattices. London Mathematical Society Monographs, vol. 18. Academic/Harcourt Brace Jovanovich Publishers, London/New York (1983). MR 716496 (85f:06012)

    Google Scholar 

  16. McCune, W.: Prover9 and Mace4 [computer software], 2005–2010

    Google Scholar 

  17. Mundici, D.: Interpretation of AF C -algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65(1), 15–63 (1986). MR 819173 (87k:46146)

    Google Scholar 

  18. Navara, M.: An orthomodular lattice admitting no group-valued measure. Proc. Am. Math. Soc. 122(1), 7–12 (1994). MR 1191871 (94k:06007)

    Google Scholar 

  19. Rabanovich, V.I., Samoĭlenko, Y.S.: Scalar operators representable as a sum of projectors. Ukraïn. Mat. Zh. 53(7), 939–952 (2001). MR 2031291 (2004i:47073)

    Google Scholar 

  20. Rainone, T.: Finiteness and paradoxical decompositions in C*-dynamical systems (2015). arXiv 1502.06153, version 1

    Google Scholar 

  21. Tarski, A.: Cardinal Algebras. With an Appendix: Cardinal Products of Isomorphism Types, by Bjarni Jónsson and Alfred Tarski. Oxford University Press, New York, NY (1949). MR 0029954 (10,686f)

    Google Scholar 

  22. Vaught, R.L.: Topics in the theory of arithmetical classes and Boolean algebras. ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.). University of California, Berkeley (1955). MR 2938637

    Google Scholar 

  23. Weber, H.: There are orthomodular lattices without nontrivial group-valued states: a computer-based construction. J. Math. Anal. Appl. 183(1), 89–93 (1994). MR 1273434 (95e:06026)

    Google Scholar 

  24. Wehrung, F.: Injective positively ordered monoids. I. J. Pure Appl. Algebra 83(1), 43–82 (1992). MR 1190444 (93k:06023)

    Google Scholar 

  25. Wehrung, F.: Tensor products of structures with interpolation. Pac. J. Math. 176(1), 267–285 (1996). MR 1433994 (98e:06010)

    Google Scholar 

  26. Wehrung, F.: The dimension monoid of a lattice. Algebra Univers. 40(3), 247–411 (1998). MR 1668068 (2000i:06014)

    Google Scholar 

  27. Wehrung, F.: Embedding simple commutative monoids into simple refinement monoids. Semigroup Forum 56(1), 104–129 (1998). MR 1490558 (99b:20092)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wehrung, F. (2017). Partial Commutative Monoids. In: Refinement Monoids, Equidecomposability Types, and Boolean Inverse Semigroups. Lecture Notes in Mathematics, vol 2188. Springer, Cham. https://doi.org/10.1007/978-3-319-61599-8_2

Download citation

Publish with us

Policies and ethics