Skip to main content

Antagonistic Interactions and Killer Yeasts

  • Chapter
  • First Online:

Abstract

Antagonistic interactions occur between yeasts and other competing microorganisms. These interactions may rely on non-proteinaceous compounds or proteins called killer toxins. A large variety of structurally and functionally diverse toxins released from killer yeasts are known. In addition to chromosomally encoded toxins, several well-characterized toxins are encoded by selfish extrachromosomal DNA or RNA molecules of viral origin. Despite their structural diversity, only a handful of toxic strategies are utilized by structurally distinct killer toxins, and multistep modes of cell killing involve common steps, such as the binding of different cell wall receptors. In addition, distinct toxin types are known to rely on common mechanisms for maturation, structural stabilization, and release from producer cells. In case of the extrachromosomally encoded toxins, specific immunity mechanisms are linked to toxin production. In these cases, toxins are assumed to provide a positive selection mechanism for the genetic system encoding both toxin and immunity. Hence, release of killer toxins might benefit both the toxin producer and the selfish genetic element in the producer cell.

Killer yeasts display broad taxonomic diversity, including basidiomycetes and ascomycetes. Target species may not only include yeasts of both fungal phyla but also other microorganisms such as bacteria or protozoa that may compete in certain natural habitats with the killer yeast. Although killer systems are assumed to be competitive mechanisms, their role in natural yeast communities is not yet well understood. Theoretical approaches have, in general, failed to predict the coexistence of killer, non-killer, and target strains that occurs with regularity in nature. The few empirical studies of natural killer systems have confirmed the ecological importance of killer toxins but have uncovered differences in the exact role the toxins play in yeast ecology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abranches J, Morais PB, Rosa CA, Mendonça-Hagler LC, Hagler A (1997) The incidence of killer activity and extracellular proteases in tropical yeast communities. Can J Microbiol 43:320–336

    Article  Google Scholar 

  • Abranches J, Valente P, Nóbrega HN, Fernandez FAS, Mendonca-Hagler LC, Hagler AN (1998) Yeast diversity and killer activity dispersed in fecal pellets from marsupials and rodents in a Brazilian tropical habitat mosaic. FEMS Microbiol Ecol 26:27–33

    Article  CAS  Google Scholar 

  • Abranches J, Vital MJS, Starmer WT, Mendonca-Hagler LC, Hagler AN (2000) The yeast community and mycocin producers of guava fruit in Rio de Janeiro, Brazil. Mycologia 92:16–22

    Article  Google Scholar 

  • Aguiar C, Lucas C (2000) Yeast killer/sensitive phenotypes and halotolerance. Food Technol Biotechnol 38:39–46

    CAS  Google Scholar 

  • Alonso A, Belda I, Santos A, Navascues E, Marquina D (2015) Advances in the control of the spoilage caused by Zygosaccharomyces species on sweet wines and concentrated grape musts. Food Control 51:129–134

    Article  CAS  Google Scholar 

  • Antuch W, Güntert P, Wüthrich K (1996) Ancestral beta gamma-crystallin precursor structure in a yeast killer toxin. Nat Struct Biol 3:662–665

    Article  CAS  PubMed  Google Scholar 

  • Arroyo-Helguera O, De Las PA, Castaño I (2012) Occurrence of killer Candida glabrata clinical isolates. Braz J Microbiol 43:880–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashida S, Shimazaki T, Kitano K, Hara S (1983) New killer toxin of Hansenula mrakii. Agric Biol Chem 47:2953–2955

    CAS  Google Scholar 

  • Bajaj BK, Dilbaghil N, Sharma S (2003) Incidence of killer yeast in cane molasses and status of industrial yeasts with respect to killer character. J Sci Ind Res 62:714–717

    CAS  Google Scholar 

  • Bajaj BK, Raina S, Singh S (2013) Killer toxin from a novel killer yeast Pichia kudriavzevii RY55 with idiosyncratic antibacterial activity. J Basic Microbiol 53:645–656

    Article  CAS  PubMed  Google Scholar 

  • Becker B, Blum A, Gießelmann E, Dausend J, Rammo D, Müller NC, Tschacksch E, Steimer M, Spindler J, Becherer U, Rettig J, Breinig F, Schmitt MJ (2016) H/KDEL receptors mediate host cell intoxication by a viral A/B toxin in yeast. Sci Rep 6:31105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bevan EA, Makower M (1963) The physiological basis of the killer character in yeast. In: Geerts SJ (ed) Genetics today. Proceedings of the XI international congress of genetics, The Hague. Pergamon Press, Oxford, pp 202–203

    Google Scholar 

  • Bolen PL, Eastman EM, Cihak PL, Hayman GT (1994) Isolation and sequence analysis of a gene from the linear DNA plasmid pPac1–2 of Pichia acaciae that shows similarity to a killer toxin gene of Kluyveromyces lactis. Yeast 10:403–414

    Article  CAS  PubMed  Google Scholar 

  • Bonilla-Salinas M, Lappe P, Ulloa M, Garcia-Garibay M, Gomez-Ruiz L (1995) Isolation and identification of killer yeasts from sugar cane molasses. Lett Appl Microbiol 21:115–116

    Article  Google Scholar 

  • Bostian KA, Sturgeon JA, Tipper DJ (1980) Encapsidation of yeast killer double-stranded ribonucleic acids: dependence of M on L. J Bacteriol 143:463–470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bostian KA, Elliott Q, Bussey H, Burn V, Smith A, Tipper DJ (1984) Sequence of the preprotoxin dsRNA gene of type I killer yeast: multiple processing events produce a two-component toxin. Cell 36:741–751

    Article  CAS  PubMed  Google Scholar 

  • Breinig F, Tipper DJ, Schmitt MJ (2002) Kre1p, the plasma membrane receptor for the yeast K1 viral toxin. Cell 108:395–405

    Article  CAS  PubMed  Google Scholar 

  • Breinig F, Schleinkofer K, Schmitt MJ (2004) Yeast Kre1p is GPI-anchored and involved in both cell wall assembly and architecture. Microbiology 150:3209–3218

    Article  CAS  PubMed  Google Scholar 

  • Breinig F, Sendzik T, Eisfeld K, Schmitt MJ (2006) Dissecting toxin immunity in virus-infected killer yeast uncovers an intrinsic strategy of self-protection. Proc Natl Acad Sci USA 103:3810–3815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown SP, Le Chat L, De Paepe M, Taddei F (2006) Ecology of microbial invasions: amplification allows virus carriers to invade more rapidly when rare. Curr Biol 16:2048–2052

    Article  CAS  PubMed  Google Scholar 

  • Bucci V, Nadell CD, Xavier JB (2011) The evolution of bacteriocin production in bacterial biofilms. Am Nat 178:E162–E173

    Article  PubMed  Google Scholar 

  • Bussey H (1991) K1 killer toxin, a pore-forming protein from yeast. Mol Microbiol 5:2339–2343

    Article  CAS  PubMed  Google Scholar 

  • Butler AR, O’Donnell RW, Martin VJ, Gooday GW, Stark MJ (1991a) Kluyveromyces lactis toxin has an essential chitinase activity. Eur J Biochem 199:483–488

    Article  CAS  PubMed  Google Scholar 

  • Butler AR, Porter M, Stark MJR (1991b) Intracellular expression of Kluyveromyces lactis toxin γ-subunit mimics treatment with exogenous toxin and distinguishes two classes of toxin-resistant mutant. Yeast 7:617–625

    Article  CAS  PubMed  Google Scholar 

  • Butler AR, White JH, Stark MJR (1991c) Analysis of the response of Saccharomyces cerevisiae cells to Kluyveromyces lactis toxin. J Gen Microbiol 137:1749–1757

    Article  CAS  PubMed  Google Scholar 

  • Butler AR, White JH, Folawiyo Y, Edlin A, Gardiner D, Stark MJ (1994) Two Saccharomyces cerevisiae genes which control sensitivity to G1 arrest induced by Kluyveromyces lactis toxin. Mol Cell Biol 14:6306–6316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzdar MA, Chi Z, Wang Q, Hua MX, Chi ZM (2011) Production, purification, and characterization of a novel killer toxin from Kluyveromyces siamensis against a pathogenic yeast in crab. Appl Microbiol Biotechnol 91:1571–1579

    Article  CAS  PubMed  Google Scholar 

  • Buzzini P, Martini A (2000) Biodiversity of killer activity in yeasts isolated from the Brazilian rain forest. Can J Microbiol 46:607–611

    Article  CAS  PubMed  Google Scholar 

  • Buzzini P, Berardinelli S, Turchetti B, Cardinali G, Martini A (2003) Fingerprinting at the strain level by differential sensitivity responses to a panel of selected killer toxins. Syst Appl Microbiol 26:466–470

    Article  CAS  PubMed  Google Scholar 

  • Buzzini P, Corazzi L, Turchetti B, Buratta M, Martini A (2004) Characterization of the in vitro antimycotic activity of a novel killer protein from Williopsis saturnus DBVPG 4561 against emerging pathogenic yeasts. FEMS Microbiol Lett 238:359–365

    CAS  PubMed  Google Scholar 

  • Carmona-Gutierrez D, Eisenberg T, Büttner S, Meisinger C, Kroemer G, Madeo F (2010) Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ 17:763–773

    Article  CAS  PubMed  Google Scholar 

  • Carreiro SC, Pagnocca FC, Bacci M, Bueno OC, Hebling MJA, Middelhoven WJ (2002) Occurrence of killer yeasts in leaf-cutting ant nests. Folia Microbiol 47:259–262

    Article  CAS  Google Scholar 

  • Castón JR, Trus BL, Booy FP, Wickner RB, Wall JS, Steven AC (1997) Structure of L-A virus: a specialized compartment for the transcription and replication of double-stranded RNA. J Cell Biol 138:975–985

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakravarty AK, Smith P, Jalan R, Shuman S (2014) Structure, mechanism, and specificity of a eukaryal tRNA restriction enzyme involved in self-nonself discrimination. Cell Rep 7:339–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang SL, Leu JY, Chang TH (2015) A population study of killer viruses reveals different evolutionary histories of two closely related Saccharomyces sensu stricto yeasts. Mol Ecol 24:4312–4322

    Article  CAS  PubMed  Google Scholar 

  • Chao L, Levin BR (1981) Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc Natl Acad Sci USA 78:6324–6328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WB, Han JF, Jong SC, Chang SC (2000) Isolation, purification, and characterization of a killer protein from Schwanniomyces occidentalis. Appl Environ Microbiol 66:5348–5352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Huang B, Anderson J, Byström AS (2011) Unexpected accumulation of ncm5U and ncm5S2U in a trm9 mutant suggests an additional step in the synthesis of mcm5U and mcm5S2U. PLoS One 6:e20783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng RH, Castón JR, Wang GJ, Gu F, Smith TJ, Baker TS, Bozarth RF, Trus BL, Cheng N, Wickner RB et al (1994) Fungal virus capsids, cytoplasmic compartments for the replication of double-stranded RNA, formed as icosahedral shells of asymmetric Gag dimers. J Mol Biol 244:255–258

    Article  CAS  PubMed  Google Scholar 

  • Choi EH, Chang HC, Chung EY (1990) Isolation and identification of wild killer yeast Candida dattila. Sanop Misaenqmul Hakhoechi 18:1–5

    CAS  Google Scholar 

  • Ciani M, Fatichenti F (2001) Killer toxin of Kluyveromyces phaffii DBVPG 6076 as a biopreservative agent to control apiculate wine yeasts. Appl Environ Microbiol 67:3058–3063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comitini F, De Ingeniis J, Pepe L, Mannazzu I, Ciani M (2004a) Pichia anomala and Kluyveromyces wickerhamii killer toxins as new tools against Dekkera/Brettanomyces spoilage yeasts. FEMS Microbiol Lett 238:235–240

    Article  CAS  PubMed  Google Scholar 

  • Comitini F, Di Pietro N, Zacchi L, Mannazzu I, Ciani M (2004b) Kluyveromyces phaffii killer toxin active against wine spoilage yeasts: purification and characterization. Microbiology 150:2535–2541

    Article  CAS  PubMed  Google Scholar 

  • Comitini F, Mannazzu I, Ciani M (2009) Tetrapisispora phaffii killer toxin is a highly specific β-glucanase that disrupts the integrity of the yeast cell wall. Microb Cell Fact 8:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Czaran TL, Hoekstra RF (2003) Killer-sensitive coexistence in metapopulations of micro-organisms. Proc Biol Sci 270:1373–1378

    Article  PubMed  PubMed Central  Google Scholar 

  • Czaran TL, Hoekstra RF, Pagie L (2002) Chemical warfare between microbes promotes biodiversity. Proc Natl Acad Sci USA 99:786–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Silva S, Calado S, Lucas C, Aguiar C (2008) Unusual properties of the halotolerant yeast Candida nodaensis killer toxin, CnKT. Microbiol Res 163:243–251

    Article  PubMed  CAS  Google Scholar 

  • Davis TS, Hofstetter RW, Foster JT, Foote NE, Keim P (2011) Interactions between the yeast Ogataea pini and filamentous fungi associated with the western pine beetle. Microb Ecol 61:626–634

    Article  PubMed  Google Scholar 

  • De Ingeniis J, Raffaelli N, Ciani M, Mannazzu I (2009) Pichia anomala DBVPG 3003 secretes a ubiquitin-like protein that has antimicrobial activity. Appl Environ Microbiol 75:1129–1134

    Article  PubMed  CAS  Google Scholar 

  • De la Peña P, Barros F, Gascón S, Lazo PS, Ramos S (1981) Effect of yeast killer toxin on sensitive cells of Saccharomyces cerevisiae. J Biol Chem 256:10420–10425

    PubMed  Google Scholar 

  • De Souza Cabral A, Barroso de Carvalho PM, Pinotti T, Hagler A, Mendonça-Hagler LC, Macrae A (2009) Killer yeasts inhibit the growth of the phytopathogen Moniliophthora perniciosa, the causal agent of witches’ broom disease. Braz J Microbiol 40:108–110

    Article  PubMed  PubMed Central  Google Scholar 

  • Dick KJ, Molan PC, Eschenbruch R (1992) The isolation from Saccharomyces cerevisiae of two antibacterial cationic proteins that inhibit malolactic bacteria. Vitis 31:105–116

    CAS  Google Scholar 

  • Dinman JD, Icho T, Wickner RB (1991) A-1 ribosomal frameshift in a double-stranded RNA virus of yeast forms a gag-pol fusion protein. Proc Natl Acad Sci USA 88:174–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durrett R, Levin S (1994) The importance of being discrete (and spatial). Theor Popul Biol 46:363–394

    Article  Google Scholar 

  • Ebersberger I, Gube M, Strauss S, Kupczok A, Eckart M, Voigt K, Kothe E, von Haesele A (2009) A stable backbone for the fungi. Available from Nature Precedings, http://hdl.handle.net/10101/npre.2009.2901.1

  • Eisfeld K, Riffer F, Mentges J, Schmitt MJ (2000) Endocytotic uptake and retrograde transport of a virally encoded killer toxin in yeast. Mol Microbiol 37:926–940

    Article  CAS  PubMed  Google Scholar 

  • Esteban R, Wickner RB (1986) Three different M1 RNA-containing viruslike particle types in Saccharomyces cerevisiae: in vitro M1 double-stranded RNA synthesis. Mol Cell Biol 6:1552–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farris GA, Mannazzu I, Budroni M (1991) Identification of killer factor in the yeast genus Metschnikowia. Biotechnol Lett 4:297–298

    Article  Google Scholar 

  • Ferraz LP, Cunha T, da Silva AC, Kupper KC (2016) Biocontrol ability and putative mode of action of yeasts against Geotrichum citri-aurantii in citrus fruit. Microbiol Res 188–189:72–99

    Article  PubMed  Google Scholar 

  • Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci USA 109:21390–21395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleet GH (1991) Cell walls. In: Rose AH, Harrison JS (eds) The yeasts, Yeast organelles, vol 4. Academic, London, pp 199–277

    Google Scholar 

  • Fogleman JC, Foster JL (1989) Microbial colonization of injured cactus tissue (Stenocereus gummosus) and its relationship to the ecology of cactophilic Drosophila mojavensis. Appl Environ Microbiol 55:100–105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fogleman JC, Starmer WT (1985) Analysis of the community structure of yeasts associated with the decaying stems of cactus. III Stenocereus thurberi. Microb Ecol 11:165–173

    Article  CAS  PubMed  Google Scholar 

  • Frank SA (1994) Spatial polymorphism of bacteriocins and other allelopathic traits. Evol Ecol 8:369–386

    Article  Google Scholar 

  • Frohloff F, Fichtner L, Jablonowski D, Breuning KD, Schaffrath R (2001) Saccharomyces cerevisiae elongator mutations confer resistance to the Kluyveromyces lactis zymocin. EMBO J 20:1993–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuentefria AM, Suh SO, Landell MF, Faganello Schrank JA, Vanstein MH, Blackwell M, Valente P (2008) Trichosporon insectorum sp. nov., a new anamorphic basidiomycetous killer yeast. Mycol Res 112:93–99

    Article  CAS  PubMed  Google Scholar 

  • Fujimura T, Wickner RW (1988) Replicase of L-A viruslike particles of Saccharomyces cerevisiae. In vitro conversion of exogenous L-A and M1 single-stranded RNAs to double-stranded form. J Biol Chem 263:454–460

    CAS  PubMed  Google Scholar 

  • Fujimura T, Ribas JC, Makhov AM, Wickner RB (1992) Pol of gag–pol fusion protein required for encapsidation of viral RNA of yeast L-A virus. Nature 359:746–749

    Article  CAS  PubMed  Google Scholar 

  • Gacser A, Hamari Z, Pfeiffer I, Varga J, Kevei F, Kucsera J (2001) Genetic diversity in the red yeast Cryptococcus hungaricus and its phylogenetic relationship to some related basidiomycetous yeasts. FEMS Yeast Res 1:213–220

    CAS  PubMed  Google Scholar 

  • Gage MJ, Bruenn J, Fischer M, SandersD STJ (2001) KP4 fungal toxin inhibits growth in Ustilago maydis by blocking calcium uptake. Mol Microbiol 41:775–785

    Article  CAS  PubMed  Google Scholar 

  • Ganter PF (2011) Everything is not everywhere: the distribution of cactophilic yeast. In: Fontaneto D (ed) The biogeography of small organisms: is everything small everywhere? Cambridge University Press, Cambridge, pp 130–174

    Chapter  Google Scholar 

  • Ganter PF, Starmer WT (1992) Killer factor as a mechanism of interference competition in yeasts associated with cacti. Ecology 73:54–67

    Article  Google Scholar 

  • Ganter PF, Starmer WT, Lachance MA, Phaff HJ (1986) Yeast communities from host plants and associated Drosophila in southern Arizona: new isolations and analysis of the relative importance of hosts and vectors on community composition. Oecologia 70:386–392

    Article  PubMed  Google Scholar 

  • Ghoul M, Mitri S (2016) The ecology and evolution of microbial competition. Trends Microbiol 24:833–845

    Article  CAS  PubMed  Google Scholar 

  • Golubev WI (1989) Action spectrum of Rhodotorula glutinis mycocins and its taxonomic implications. Mikrobiologiya 58:99–103

    CAS  Google Scholar 

  • Golubev WI (1991a) Taxonomic evaluation of mycocins produced by the basidiomycetous yeast Cryptococcus podzolicus. Mikrobiologiya 60:115–121

    Google Scholar 

  • Golubev WI (1991b) Taxonomic evaluation of fungistatic mycocins produced by yeasts of Rhodotorula minuta complex. Mycol i Phytopathol 25:482–486

    Google Scholar 

  • Golubev WI (1992) Antibiotic activity and taxonomic position of Rhodotorula fujisanensis (Soneda) Johnson et Phaff. Mikrobiol Zhurnal (Kiev) 54:21–26

    Google Scholar 

  • Golubev WI (1998) Killer activity of Tilletiopsis albescens Gokhale: taxonomic and phylogenetic implication. Syst Appl Microbiol 21:429–432

    Article  CAS  PubMed  Google Scholar 

  • Golubev WI (2006) Antagonistic interactions among yeasts. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 197–219

    Chapter  Google Scholar 

  • Golubev WI (2007) Mycocinogeny in smut yeast-like fungi of the genus Pseudozyma. Mikrobiologiia 76:719–722

    CAS  Google Scholar 

  • Golubev WI (2009) Anti-tremellomycetes activity of Cryptococcus pinus mycocin. Microbiology 78:315–320

    Article  CAS  Google Scholar 

  • Golubev WI (2016) Taxonomic specificity of the sensitivity to the Wickerhamomyces bovis fungistatic mycocin. Microbiology 85:444–448

    Article  CAS  Google Scholar 

  • Golubev WI, Blagodatskaya VM (1993) Taxonomic heterogeneity of Pichia membranifaciens Hansen revealed by killer-sensitive reactions. Mikrobiologiya 62:291–299

    CAS  Google Scholar 

  • Golubev WI, Blagodatskaya VM (1994) Intra- and intergeneric killing patterns of Pichia punctispora (Melard 1910) Dekker 1931 mycocins. Mikrobiologiya 63:637–642

    CAS  Google Scholar 

  • Golubev WI, Boekhout T (1995) Sensitivity to killer toxins as a taxonomic tool among heterobasidiomycetous yeasts. Stud Mycol 38:47–58

    Google Scholar 

  • Golubev WI, Churkina LG (1990) High incidence of killer strains in the yeast Rhodotorula mucilaginosa (Jorgensen) Harrison. Izv Akad Nauk SSSR (Ser Biol) N6:854–861

    Google Scholar 

  • Golubev WI, Churkina LG (2001) Specificity of yeast sensitivity to the mycocin of Tilletiopsis flava VKM Y-2823. Mikrobiologiya 70:51–54

    CAS  Google Scholar 

  • Golubev WI, Kuznetsova LB (1989) Formation and spectrum of action of the mycocins of the basidiomycetous yeast Cryptococcus laurentii (Kufferath) Skinner. Mikrobiologiya 58:980–984

    CAS  Google Scholar 

  • Golubev WI, Kuznetsova LB (1991) Taxonomic specificity of action spectrum of Filobasidium capsuligenum mycocin. Mikrobiologiya 60:530–536

    Google Scholar 

  • Golubev WI, Nakase T (1997) Mycocinogeny in the genus Bullera: taxonomic specificity of sensitivity to the mycocin produced by Bullera sinensis. FEMS Microbiol Lett 146:59–64

    Article  CAS  PubMed  Google Scholar 

  • Golubev WI, Nakase T (1998) Mycocinogeny in the genus Bullera: killer activity of Bullera unica and intrageneric killer-sensitive relationships. Mikrobiologiya 67:225–230

    CAS  Google Scholar 

  • Golubev WI, Shabalin Y (1994) Microcin production by the yeast Cryptococcus humicola. FEMS Microbiol Lett 119:105–110

    Article  CAS  PubMed  Google Scholar 

  • Golubev WI, Tomashevskaya A (2009) Characterization of mycocin secreted by Rhodotorula colostri (Castelli) Lodder. Biol Bull 36:311–316

    Article  CAS  Google Scholar 

  • Golubev WI, Tsiomenko AB (1985) Killer strains of ballistospore-producing yeast-like fungus Sporidiobolus salmonicolor. Dokl Akad Nauk USSR 282:425–428

    Google Scholar 

  • Golubev WI, Ikeda R, Shinoda T, Nakase T (1996) Mycocinogeny in the genus Bullera: Antitremellaceous yeast activity of killer toxin produced by Bullera hannae. J Gen Appl Microbiol 42:471–479

    Article  CAS  Google Scholar 

  • Golubev WI, Ikeda R, Shinoda T, Nakase T (1997) Antifungal activity of Bullera alba (Hanna) Derx. Mycoscience 38:25–29

    Article  Google Scholar 

  • Golubev WI, Kulakovskaya TV, Golubeva EW (2001) The yeast Pseudozyma fusiformata VKM Y-2821 producing an antifungal glycolipid. Microbiology 70:553–556

    Article  CAS  Google Scholar 

  • Golubev WI, Pfeiffer I, Golubeva E (2002) Mycocin production in Trichosporon pullulans populations colonizing tree exudates in the spring. FEMS Microbiol Ecol 40:151–157

    Article  CAS  PubMed  Google Scholar 

  • Golubev WI, Gadanho M, Sampaio JP, Golubev NW (2003a) Cryptococcus nemorosus sp. nov. and Cryptococcus perniciosus sp. nov., related to Papiliotrema Sampaio et al. (Tremellales). Int J Syst Evol Microbiol 53:905–911

    Article  CAS  PubMed  Google Scholar 

  • Golubev WI, Pfeiffer I, Churkina LG, Golubeva EW (2003b) Double-stranded RNA viruses in a mycocinogenic strain of Cystofilobasidium infirmominiatum. FEMS Yeast Res 3:63–68

    CAS  PubMed  Google Scholar 

  • Golubev WI, Kulakovskaya T, Kulakovskaya E, Golubev NV (2004) The fungicidal activity of an extracellular glycolipid from Sympodiomycopsis paphiopedili Sugiyama et al. Microbiology 73:724–728

    Article  CAS  Google Scholar 

  • Golubev WI, Pfeiffer I, Golubeva E (2006) Mycocin production in Pseudozyma tsukubaensis. Mycopathologia 162:313–316

    Article  CAS  PubMed  Google Scholar 

  • Golubev WI, Kulakovskaya TV, Shashkov AS, Kulakovskaya EV, Golubev NV (2008) Antifungal cellobiose lipid secreted by the epiphytic yeast Pseudozyma graminicola. Microbiology 77:171–175

    Article  CAS  Google Scholar 

  • Goretti M, Turchetti B, Buratta M, Branda E, Corazzi L, Vaughan-Martini A, Buzzini P (2009) In vitro antimycotic activity of a Williopsis saturnus killer protein against food spoilage yeasts. Int J Food Microbiol 131:178–182

    Article  CAS  PubMed  Google Scholar 

  • Goto K, Iwatuki Y, Kitano K, Obata T, Hara S (1990) Cloning and nucleotide sequence of the KHR killer gene of Saccharomyces cerevisiae. Agric Biol Chem 54:979–984

    CAS  PubMed  Google Scholar 

  • Goto K, Fukuda H, Kichise K, Kitano K, Hara S (1991) Cloning and nucleotide sequence of the KHS killer gene of Saccharomyces cerevisiae. Agric Biol Chem 55:1953–1958

    CAS  PubMed  Google Scholar 

  • Greig D, Leu JY (2009) Natural history of budding yeast. Curr Biol 19:R886–R890

    Article  CAS  PubMed  Google Scholar 

  • Greig D, Travisano M (2008) Density-dependent effects on allelopathic interactions in yeast. Evolution 62:521–527

    Article  PubMed  Google Scholar 

  • Gunge N, Tamaru A, Ozawa F, Sakaguchi K (1981) Isolation and characterization of linear deoxyribonucleic acid plasmids from Kluyveromyces lactis and the plasmid-associated killer character. J Bacteriol 145:382–390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gurevitch A (1984) Population biology of the yeasts associated with plant necroses: effects of growth, colonization, and dispersal in a patch-structured environment. Dissertation, Syracuse University, Syracuse, NY

    Google Scholar 

  • Guyard C, Séguy N, Cailliez JC, Drobecq H, Polonelli L, Dei-Cas E, Mercenier A, Menozzi FD (2002a) Characterization of a Williopsis saturnus var. mrakii high molecular weight secreted killer toxin with broad-spectrum antimicrobial activity. J Antimicrob Chemother 49:961–971

    Article  CAS  PubMed  Google Scholar 

  • Guyard C, Dehecq E, Tissier JP, Polonelli L, Dei-Cas E, Cailliez JC, Menozzi FD (2002b) Involvement of β-glucans in the wide-spectrum antimicrobial activity of Williopsis saturnus var. mrakii MUCL 41968 killer toxin. Mol Med 8:686–694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayman GT, Bolen BL (1991) Linear DNA plasmids of Pichia inositovora are associated with a novel killer toxin activity. Curr Genet 19:389–393

    Article  CAS  PubMed  Google Scholar 

  • Heiligenstein S, Eisfeld K, Sendzik T, Jimenéz-Becker N, Breinig F, Schmitt MJ (2006) Retrotranslocation of a viral A/B toxin from the yeast endoplasmic reticulum is independent of ubiquitination and ERAD. EMBO J 25:4717–4727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heintel T, Zagorc T, Schmitt MJ (2001) Expression, processing and high level secretion of a virus toxin in fission yeast. Appl Microbiol Biotechnol 56:165–172

    Article  CAS  PubMed  Google Scholar 

  • Hipp SS, Lawton WD, Chen NC, Gaafar HA (1974) Inhibition of Neisseria gonorrhoeae by a factor produced by Candida albicans. Appl Microbiol 27:192–196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hishinuma F, Nakamura K, Hirai K, Nishizawa R, Gunge N, Maeda T (1984) Cloning and nucleotide sequence of the DNA killer plasmids from yeast. Nucleic Acids Res 12:7581–7597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgson VJ, Button D, Walker GM (1995) Anti-Candida activity of a novel killer toxin from the yeast Williopsis mrakii. Microbiology 141:2003–2012

    Article  CAS  PubMed  Google Scholar 

  • Hua MX, Chi Z, Liu G, Buzdar MA, Chi ZM (2010) Production of a novel and cold-active killer toxin by Mrakia frigida 2E00797 isolated from sea sediment in Antarctica. Extremophiles 14:515–521

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Johansson MJ, Bystrom AS (2005) An early step in wobble uridine tRNA modification requires the Elongator complex. RNA 11:424–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchins K, Bussey H (1983) Cell wall receptor for yeast killer toxin: involvement of (1–6)-β-D-glucan. J Bacteriol 154:161–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Icho T, Wickner RB (1989) The double-stranded RNA genome of yeast virus L-A encodes its own putative RNA polymerase by fusing two open reading frames. J Biol Chem 264:6716–6723

    CAS  PubMed  Google Scholar 

  • Iwasa Y, Nakamaru M, Sa L (1998) Allelopathy of bacteria in a lattice population: competition between colicin-sensitive and colicin-producing strains. Evol Ecol 12:785–802

    Article  Google Scholar 

  • İzgü F, Altinbay D (2004) Isolation and characterization of the K5-type yeast killer protein and its homology with an exo-β-1,3-glucanase. Biosci Biotechnol Biochem 68:685–693

    Article  PubMed  Google Scholar 

  • İzgü F, Altinbay D, Sertkaya A (2005) Enzymic activity of the K5-type yeast killer toxin and its characterization. Biosci Biotechnol Biochem 69:2200–2206

    Article  PubMed  Google Scholar 

  • Izgü F, Altinbay D, Türeli AE (2007a) In vitro susceptibilities of Candida spp. to Panomycocin, a novel exo-β-1,3-glucanase isolated from Pichia anomala NCYC 434. Microbiol Immunol 51:797–803

    Article  PubMed  Google Scholar 

  • Izgü F, Altinbay D, Türeli AE (2007b) In vitro activity of panomycocin, a novel exo-β-1,3-glucanase isolated from Pichia anomala NCYC 434, against dermatophytes. Mycoses 50:31–34

    Article  PubMed  Google Scholar 

  • Jablonowski D, Schaffrath R (2007) Zymocin, a composite chitinase and tRNase killer toxin from yeast. Biochem Soc Trans 35:1533–1537

    Article  CAS  PubMed  Google Scholar 

  • Jablonowski D, Fichtner L, Martin VJ, Klassen R, Meinhardt F, Stark MJR, Schaffrath R (2001) Saccharomyces cerevisiae cell wall chitin, the potential Kluyveromyces lactis zymocin receptor. Yeast 18:1285–1299

    Article  CAS  PubMed  Google Scholar 

  • Jablonowski D, Zink S, Mehlgarten C, Daum G, Schaffrath R (2006) tRNAGlu wobble uridine methylation by Trm9 identifies Elongator’s key role for zymocin-induced cell death in yeast. Mol Microbiol 59:677–688

    Article  CAS  PubMed  Google Scholar 

  • Janderova B, Gaskova D, Bendova O (1995) Consequences of Sporidiobolus pararoseus killer toxin action on sensitive cells. Folia Microbiol 40:165–167

    Article  CAS  Google Scholar 

  • Jeske S, Meinhardt F (2006) Autonomous cytoplasmic linear plasmid pPac1–1 of Pichia acaciae: molecular structure and expression studies. Yeast 23:479–486

    Article  CAS  PubMed  Google Scholar 

  • Jeske S, Meinhardt F, Klassen R (2006) Extranuclear inheritance: virus-like DNA-elements in yeast. In: Esser K, Lüttge U, Kadereit J, Beyschlag W (eds) Progress in botany, vol 68. Springer, Berlin, pp 98–129

    Chapter  Google Scholar 

  • Jijakli MH, Lepoivre P (1998) Characterization of an exo-β-1,3-glucanase produced by Pichia anomala strain K, antagonist of Botrytis cinerea on apples. Phytopathology 88:335–343

    Article  CAS  PubMed  Google Scholar 

  • Kagan B (1983) Mode of action of yeast killer toxins: channel formation in lipid bilayer membranes. Nature 302:709–711

    Article  CAS  PubMed  Google Scholar 

  • Kagiyama S, Aiba T, Kadowaki K, Mori K (1988) New killer toxin of halophilic Hansenula anomala. Agric Biol Chem 52:1–7

    Article  CAS  Google Scholar 

  • Kalhor HR, Clarke S (2003) Novel methyltransferase for modified uridine residues at the wobble position of tRNA. Mol Cell Biol 23:9283–9292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kántor A, Hutková J, Petrová J, Hleba L, Kačániová M (2016) Antimicrobial activity of pulcherrimin pigment produced by Metschnikowia pulcherrima against various yeast species. J Microbiol Biotechnol Food Sci 5:282–285

    Article  CAS  Google Scholar 

  • Karamysheva ZN, Ksenzenko VN, Golubev WI, Ratner EN, Tikhomirova LP (1991) Characterization of viruses in the mycocinogenic strain of Cystofilobasidium bisporidii VKM Y-2700. Dokl Ross Akad Nauk 331:376–378

    Google Scholar 

  • Kasahara S, Inoue SB, Mio T, Yamada T, Nakajima T, Ichisima E, Furuichi Y, Yamada H (1994) Involvement of cell β-glucan in the action of HM-1 killer toxin. FEBS Lett 348:27–32

    Article  CAS  PubMed  Google Scholar 

  • Kast A, Klassen R, Meinhardt F (2014) rRNA fragmentation induced by a yeast killer toxin. Mol Microbiol 91:606–617

    Article  CAS  PubMed  Google Scholar 

  • Kast A, Voges R, Schroth M, Schaffrath R, Klassen R, Meinhardt F (2015) Autoselection of cytoplasmic yeast virus like elements encoding toxin/antitoxin systems involves a nuclear barrier for immunity gene expression. PLoS Genet 11:e1005005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kimura T, Kitamoto N, Matsuoka K, Nakamura K, Iimura Y, Kiro Y (1993) Isolation and nucleotide sequences of the genes encoding killer toxins from Hansenula mrakii and H. saturnus. Gene 137:265–270

    Article  CAS  PubMed  Google Scholar 

  • Kimura T, Kitamoto N, Ohta Y, Kito Y, Iimura Y (1995) Structural relationships among killer toxins secreted from the killer strains of the genus Williopsis. J Ferment Bioeng 80:85–87

    Article  CAS  Google Scholar 

  • Kimura T, Komiyama T, Furuichi Y, Iimura Y, Karita S, Sakka K, Ohmiya K (1999) N-Glycosylation is involved in the sensitivity of Saccharomyces cerevisiae to HM-1 killer toxin secreted from Hansenula mrakii IFO 0895. App Microbiol Biotechnol 51:176–184

    Article  CAS  Google Scholar 

  • Kinkel LL, Schlatter DC, Xiao K, Baines AD (2014) Sympatric inhibition and niche differentiation suggest alternative coevolutionary trajectories among Streptomycetes. ISME J 8:249–256

    Google Scholar 

  • Kitamoto HK, Hasebe A, Ohmomo S, Suto EG, Muraki M, Iimura Y (1999) Prevention of aerobic spoilage of maize silage by genetically modified killer yeast, Kluyveromyces lactis, defective in the ability to grow on lactic acid. Appl Environ Microbiol 65:4697–4700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klassen R, Meinhardt F (2002) Linear plasmids pWR1A and pWR1B of the yeast Wingea robertsiae are associated with a killer phenotype. Plasmid 48:142–148

    Article  CAS  PubMed  Google Scholar 

  • Klassen R, Meinhardt F (2003) Structural and functional analysis of the killer element pPin1–3 from Pichia inositovora. Mol Gen Genomics 290:190–199

    Article  CAS  Google Scholar 

  • Klassen R, Meinhardt F (2005) Induction of DNA damage and apoptosis in Saccharomyces cerevisiae by a yeast killer toxin. Cell Microbiol 7:393–401

    Article  CAS  PubMed  Google Scholar 

  • Klassen R, Meinhardt F (2007) Linear protein-primed replicating plasmids in eukaryotic microbes. In: Meinhardt F, Klassen R (eds) Microbial linear plasmids, microbiology monographs. Springer, Berlin, pp 187–226

    Chapter  Google Scholar 

  • Klassen R, Tontsidou L, Larsen M, Meinhardt F (2001) Genome organization of the linear cytoplasmic element pPE1B from Pichia etchellsii. Yeast 18:953–961

    Article  CAS  PubMed  Google Scholar 

  • Klassen R, Teichert S, Meinhardt F (2004) Novel yeast killer toxins provoke S-phase arrest and DNA damage checkpoint activation. Mol Microbiol 53:263–273

    Article  CAS  PubMed  Google Scholar 

  • Klassen R, Paluszynski J, Wemhoff S, Pfeiffer A, Fricke J, Meinhardt F (2008) The primary target of the killer toxin from Pichia acaciae is tRNAGln. Mol Microbiol 69:681–697

    Article  CAS  PubMed  Google Scholar 

  • Klassen R, Kast A, Wünsche G, Paluszynski J, Meinhardt F (2014) Immunity factors for two related tRNAGln targeting killer toxins distinguish cognate and non-cognate toxic subunits. Curr Genet 60:213–222

    Article  CAS  PubMed  Google Scholar 

  • Koltin Y, Day PR (1976) Inheritance of killer phenotypes and double-stranded RNA in Ustilago maydis. Proc Natl Acad Sci USA 73:594–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komiyama T, Ohta T, Furuichi Y, Ohta Y, Tsukada Y (1995) Structure and activity of HYI killer toxin from Hansenula saturnus. Biol Pharm Bull 18:1057–1059

    Article  CAS  PubMed  Google Scholar 

  • Komiyama T, Ohta T, Urakami H, Shiratori Y, Takasuka T, Satoh M, Watanabe T, Furuichi Y (1996) Pore formation on proliferating yeast Saccharomyces cerevisiae cell buds by HM-1 killer toxin. J Biochem 119:731–736

    Article  CAS  PubMed  Google Scholar 

  • Komiyama T, Shirai T, Ohta T, Urakami H, Furuichi Y, Ohta Y, Tsukada Y (1998) Action properties of HYI killer toxin from Williopsis saturnus var. saturnus, and antibiotics, aculeacin A and papulacandin B. Biol Pharm Bull 21:1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Kono I, Himeno K (1997) A novel killer yeast effective on Schizosaccharomyces pombe. Biosci Biotechnol Biochem 61:563–564

    Article  CAS  PubMed  Google Scholar 

  • Kulakovskaya TV, Karamysheva ZN, Andreeva NA, Golubev WI (1996) Some characteristics of Cystofilobasidium bisporidii mycocin. Mikrobiologiya 65:772–776

    CAS  Google Scholar 

  • Kulakovskaya T, Kulakovskaya E, Golubev W (2003) ATP leakage from yeast cells treated by extracellular glycolipids of Pseudozyma fusiformata. FEMS Yeast Res 3:401–404

    Article  CAS  PubMed  Google Scholar 

  • Kulakovskaya TV, Shashkov AS, Kulakovskaya EV, Golubev WI (2005) Ustilagic acid secretion by Pseudozyma fusiformata strains. FEMS Yeast Res 5:919–923

    Article  CAS  PubMed  Google Scholar 

  • Kulakovskaya TV, Golubev WI, Tomashevskaya MA, Kulakovskaya EV, Shashkov AS, Grachev AA, Chizhov AS, Nifantiev NE (2010) Production of antifungal cellobiose lipids by Trichosporon porosum. Mycopathologia 169:117–123

    Article  CAS  PubMed  Google Scholar 

  • Kumbhar C, Watve M (2013) Why antibiotics: a comparative evaluation of different hypotheses for the natural role of antibiotics and an evolutionary synthesis. Nat Sci 5:26–40

    CAS  Google Scholar 

  • Kurtzman CP, Robnett CJ, Basehoar-Powers E (2008) Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov. FEMS Yeast Res 8:939–954

    Article  CAS  PubMed  Google Scholar 

  • Labbani FZ, Turchetti B, Bennamoun L, Dakhmouche S, Roberti R, Corazzi L, Meraihi Z, Buzzini P (2015) A novel killer protein from Pichia kluyveri isolated from an Algerian soil: purification and characterization of its in vitro activity against food and beverage spoilage yeasts. Antonie Van Leeuwenhoek 107:961–970

    Article  CAS  PubMed  Google Scholar 

  • Laplace JM, Delgenes JP, Moletta R, Navarro JM (1992) Alcoholic glucose and xylose fermentations by the co-culture process: compatibility and typing of associated strains. Can J Microbiol 38:654–658

    Article  CAS  PubMed  Google Scholar 

  • Lehmann PF, Cowan LE, Jones RM, Ferencak WJ (1987a) Use of killer fungi and antifungal chemicals in characterization of yeast species and biotypes. Trans Br Mycol Soc 88:199–206

    Article  CAS  Google Scholar 

  • Lehmann PF, Lemon MB, Ferencak WJ (1987b) Antifungal compounds (“killer factors”) produced by Kluyveromyces species and their detection on an improved medium containing glycerol. Mycologia 79:790–794

    Article  CAS  Google Scholar 

  • Leisner JJ, Haaber J (2012) Intraguild predation provides a selection mechanism for bacterial antagonistic compounds. Proc R Soc Lond B Biol Sci 279:4513–4521

    Article  CAS  Google Scholar 

  • Levin BR, Antonovics J, Sharma H (1988) Frequency-dependent selection in bacterial populations [and discussion]. Philos Trans R Soc B 319:459–472

    Article  CAS  Google Scholar 

  • Liu GL, Wang K, Hua MX, Buzdar MA, Chi ZM (2012) Purification and characterization of the cold-active killer toxin from the psychrotolerant yeast Mrakia frigida isolated from sea sediments in Antarctica. Process Biochem 47:822–827

    Article  CAS  Google Scholar 

  • Llorente P, Marquina D, Santos A, Peinado JM, Spencer-Martins I (1997) Effect of salt on the killer phenotype of yeasts from olive brines. Appl Environ Microbiol 63:1165–1167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lowes KF, Shearman CA, Payne J, MacKenzie D, Archer DB, Merry RJ, Gasson MJ (2000) Prevention of yeast spoilage in feed and food by the yeast mycocin HMK. Appl Environ Microbiol 66:1066–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Huang B, Esberg A, Johansson MJ, Bystrom AS (2005) The Kluyveromyces lactis γ-toxin targets tRNA anticodons. RNA 11:1648–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukša J, Podoliankaité M, Vepštaite I, Strazdaité-Žieliene Z, Urbonavičius J, Serviené E (2015) Yeast-1,6-glucan is a primary target for the Saccharomyces cerevisiae K2 toxin. Eukaryot Cell 14:406–414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Makower M, Bevan EA (1963) The inheritance of a killer character in yeast (Saccharomyces cerevisiae). In: Geerts SJ (ed) Genetics today: Proceedings of the XI international congress of genetics, The Hague. Pergamon Press, Oxford, p 202

    Google Scholar 

  • Maqueda M, Zamora E, Álvarez ML, Ramírez M (2012) Characterization, ecological distribution, and population dynamics of Saccharomyces Sensu Stricto killer yeasts in the spontaneous grape must fermentations of Southwestern Spain. Appl Environ Microbiol 78:735–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marquina D, Santos A, Peinado JM (2002) Biology of killer yeasts. Int Microbiol 5:65–71

    Article  CAS  PubMed  Google Scholar 

  • Maturano YM, Nally MC, Toro ME, Castellanos de Figueroa LI, Combina M, Vazquez F (2012) Monitoring of killer yeast populations in mixed cultures: influence of incubation temperature of microvinifications samples. World J Microbiol Biotechnol 28:3135–3142

    Article  PubMed  Google Scholar 

  • McCracken DA, Martin VJ, Stark MJR, Bolen PL (1994) The linear-plasmid-encoded toxin produced by the yeast Pichia acaciae: characterization and comparison with the toxin of Kluyveromyces lactis. Microbiology 140:425–431

    Article  CAS  PubMed  Google Scholar 

  • Mehlgarten C, Schaffrath R (2004) After chitin docking, toxicity of Kluyveromyces lactis zymocin requires Saccharomyces cerevisiae plasma membrane H+-ATPase. Cell Microbiol 6:569–580

    Article  CAS  PubMed  Google Scholar 

  • Mehlomakulu NN, Setati ME, Divol B (2014) Characterization of novel killer toxins secreted by wine-related non-Saccharomyces yeasts and their action on Brettanomyces spp. Int J Food Microbiol 188:83–91

    Article  CAS  PubMed  Google Scholar 

  • Meinhardt F, Klassen R (2009) Yeast killer toxins: fundamentals and applications. In: Anke T, Weber D (eds) The mycota, vol 15. Springer, Berlin, pp 107–130

    Google Scholar 

  • Meinhardt F, Schaffrath R (2001) Extranuclear inheritance: cytoplasmic linear double-stranded DNA killer elements of the dairy yeast Kluyveromyces lactis. In: Esser K, Lüttge U, Kadereit JW, Beyschlag W (eds) Progress in botany, vol 62. Springer, Berlin, pp 51–70

    Chapter  Google Scholar 

  • Middelbeek EJ, Peters JGWH, Stumm C, Vogel GD (1980a) Properties of a Cryptococcus laurentii killer toxin and conditional killing effect of the toxin on Cryptococcus albidus. FEMS Microbiol Lett 9:81–84

    Article  CAS  Google Scholar 

  • Middelbeek EJ, Stumm C, Vogel GD (1980b) Effects of a Pichia kluyveri killer toxin on sensitive cells. Antonie Van Leeuwenhoek 46:205–220

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto M, Onozato N, Selvakumar D, Kimura T, Furuichi Y, Komiyama T (2006) The role of the histidine-35 residue in the cytocidal action of HM-1 killer toxin. Microbiology 152:2951–2958

    Article  PubMed  Google Scholar 

  • Miyamoto M, Furuichi Y, Komiyama T (2011) Genome-wide screen of Saccharomyces cerevisiae for killer toxin HM-1 resistance. Yeast 28:27–41

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto M, Furuichi Y, Komiyama T (2012) The high-osmolarity glycerol- and cell wall integrity-MAP kinase pathways of Saccharomyces cerevisiae are involved in adaptation to the action of killer toxin HM-1. Yeast 29:475–485

    Article  CAS  PubMed  Google Scholar 

  • Morace G, Archibusacci C, Sestito M, Polonelli L (1983/1984) Strain differentiation of pathogenic yeasts by the killer system. Mycopathol 84:81–85

    Article  Google Scholar 

  • Morita T, Ishibashi Y, Fukuoka T, Imura T, Sakai H, Abe M, Kitamoto D (2011) Production of glycolipid biosurfactants, cellobiose lipids, by Cryptococcus humicola JCM 1461 and their interfacial properties. Biosci Biotechnol Biochem 75:1597–1599

    Article  CAS  PubMed  Google Scholar 

  • Moriya K, Shimoii H, Sato S, Saito K, Tadenuma M (1987) Flocculent killer yeast for ethanol fermentation of beet molasses. Hakkokugaku Kaishi 65:393–397

    CAS  Google Scholar 

  • Muccilli S, Wemhoff S, Restuccia C, Meinhardt F (2013) Exoglucanase-encoding genes from three Wickerhamomyces anomalus killer strains isolated from olive brine. Yeast 30:33–43

    Article  CAS  PubMed  Google Scholar 

  • Mushtaq M, Nahar S, Hashmi H (2010) Screening of killer-sensitive-pattern (KSP) for biotyping yeast strains isolated from slime fluxes of trees and flowers’ nectar. Pak J Bot 42:4313–4327

    Google Scholar 

  • Mushtaq M, Nahar S, Alam MS, Hashmi MH (2015) Screening of killer, sensitive and neutral phenotypes in yeasts using certain sensitive Pichia strains. Int J Biol Biotech 12:3–10

    Google Scholar 

  • Nagornaya SS, Zharova VP, Kotlyar AN (1989) Yeast antagonists in the normal microflora of the intestine tract in long-livers of Abkhazia. Mikrobiol Zh 51:34–39

    Google Scholar 

  • Naumov GI (1985) Comparative genetics of yeasts. XIII. Unusual inheritance of toxin production in Saccharomyces paradoxus Batschinskaya. Genetika 21:1794–1798

    CAS  PubMed  Google Scholar 

  • Nguyen HV, Panon G (1998) The yeast Metschnikowia pulcherrima has an inhibitory effect against various yeast species. Sci Aliment 18:515–526

    Google Scholar 

  • Nomoto H, Kitano K, Shimizaki T, Kodama K, Hara S (1984) Distribution of killer yeasts in the genus Hansenula. Agric Biol Chem 48:807–809

    Google Scholar 

  • Orentaite I, Poranen MM, Oksanen HK, Daugelavicius R, Bamford DH (2016) K2 killer toxin-induced physiological changes in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 16:fow003

    Article  PubMed  CAS  Google Scholar 

  • Oro L, Zara S, Fancellu F, Mannazzu I, Budroni M, Ciani M, Comitini M (2014) TpBGL2 codes for a Tetrapisispora phaffii killer toxin active against wine spoilage yeasts. FEMS Yeast Res 14:464–471

    Article  CAS  PubMed  Google Scholar 

  • Paluszynski JP, Klassen R, Meinhardt F (2007) Pichia acaciae killer system: genetic analysis of toxin immunity. Appl Environ Microbiol 73:4373–4378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panchal CJ, Meacher C, van Oostrom J, Stewart GG (1985) Phenotypic expression of Kluyveromyces lactis killer toxin against Saccharomyces spp. Appl Environ Microbiol 50:257–260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park CM, Bruenn JA, Ganesa C, Flurkey WF, Bozarth RF, Koltin Y (1994) Structure and heterologous expression of the Ustilago maydis viral toxin KP4. Mol Microbiol 11:155–164

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer I, Golubev WI, Farkas Z, Kucsera J, Golubev N (2004) Mycocin production in Cryptococcus aquaticus. Antonie Van Leeuwenhoek 86:369–375

    Article  CAS  PubMed  Google Scholar 

  • Phaff HJ, Starmer WT, Tredick-Kline J (1987) Pichia kluyveri sensu lato. A proposal for two new varieties and a new anamorph. In: de Hoog GS, Smith MT, Weijman ACM (eds) The expanding realm of yeast-like fungi: Proceedings of an international symposium on the perspectives of taxonomy, ecology and phylogeny of yeasts and yeast-like fungi, Studies in Mycology, vol 30. Elsevier, Amsterdam, pp 403–414

    Google Scholar 

  • Pieczynska MD, de Visser JA, Korona R (2013) Incidence of symbiotic dsRNA ‘killer’ viruses in wild and domesticated yeast. FEMS Yeast Res 13:856–859

    Article  CAS  PubMed  Google Scholar 

  • Pintar J, Starmer WT (2003) The cost and benefits of killer toxin production by the yeast Pichia kluyveri. Antonie Van Leeuwenhoek 83:89–98

    Article  CAS  PubMed  Google Scholar 

  • Polonelli L, Morace G (1986) Reevaluation of the yeast killer phenomenon. J Clin Microbiol 24:866–869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polonelli L, Dettori G, Cattel C, Morace G (1987) Biotyping of mycelial fungus cultures by the killer system. Eur J Epidemiol 3:237–242

    Article  CAS  PubMed  Google Scholar 

  • Price WS, Tsuchiya F, Suzuki C, Arata Y (1999) Characterization of the solution properties of Pichia farinosa killer toxin using PGSE NMR diffusion measurements. J Biomol NMR 13:113–117

    Article  CAS  PubMed  Google Scholar 

  • Puchkov EO, Wiese A, Seydel U, Kulakovskaya T (2001) Cytoplasmic membrane of a sensitive yeast is a primary target for Cryptococcus humicola mycocidal compound (microcin). Biochim Biophys Acta 1512:239–250

    Article  CAS  PubMed  Google Scholar 

  • Puchkov EO, Zähringer U, Lindner B, Kulakovskaya T, Seydel U, Wiese A (2002) The mycocidal, membrane-active complex of Cryptococcus humicola is a new type of cellobiose lipid with detergent features. Biochim Biophys Acta 1558:162–270

    Google Scholar 

  • Radler F, Herzberger S, Schwarz P (1993) Investigation of a killer strain of Zygosaccharomyces bailii. J Gen Microbiol 139:494–500

    Article  Google Scholar 

  • Reiter J, Herker E, Madeo F, Schmitt MJ (2005) Viral killer toxins induce caspase-mediated apoptosis in yeast. J Cell Biol 168:353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuter M, Bell G, Greig D (2007) Increased outbreeding in yeast in response to dispersal by an insect vector. Curr Biol 17:R81–R83

    Article  CAS  PubMed  Google Scholar 

  • Riffer F, Eisfeld K, Breinig F, Schmitt MJ (2002) Mutational analysis of K28 preprotoxin processing in the yeast Saccharomyces cerevisiae. Microbiology 148:1317–1328

    Article  CAS  PubMed  Google Scholar 

  • Riley MA, Wertz JE (2002) Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 84:357–364

    Article  CAS  PubMed  Google Scholar 

  • Rivero D, Berna L, Stefanini I, Baruffini E, Bergerat A, Csikasz-Nagy A, De Filippo C, Cavalieri D (2015) Hsp12p and PAU genes are involved in ecological interactions between natural yeast strains. Environ Microbiol 17:3069–3081

    Article  CAS  PubMed  Google Scholar 

  • Robinson RJ, Miller BS, Johnson JA, Curnutte B, Lord TH (1962) Studies of two polypeptide antibiotics elaborated by Saccharomyces cerevisiae. Cereal Chem 39:183–188

    CAS  Google Scholar 

  • Robledo-Leal E, Villarreal-Treviño L, González G (2012) Occurrence of killer yeasts in isolates of clinical origin. Trop Biomed 29:297–300

    CAS  PubMed  Google Scholar 

  • Robledo-Leal E, Elizondo-Zertuche M, Villarreal-Treviño L, Treviño-Rangel Rde J, García-Maldonado N, Adame-Rodríguez JM, González GM (2014) Killer behavior within the Candida parapsilosis complex. Folia Microbiol 59:503–506

    Article  CAS  Google Scholar 

  • Rodrigues A, Cable RN, Mueller UG, Bacci M Jr, Pagnocca FC (2009) Antagonistic interactions between garden yeasts and microfungal garden pathogens of leaf-cutting ants. Antonie Van Leeuwenhoek 96:331–342

    Article  PubMed  Google Scholar 

  • Rodríguez-Cousino N, Maqueda M, Ambrona J, Zamora E, Esteban R, Ramírez M (2011) A new wine Saccharomyces cerevisiae killer toxin (Klus) encoded by a double-stranded RNA virus, with broad antifungal activity is evolutionarily related to a chromosomal host gene. Appl Environ Microbiol 77:1822–1832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rogers D, Bevan EA (1978) Group classification of killer yeasts based on cross-reactions between strains of different species and origin. J Gen Microbiol 105:199–202

    Article  Google Scholar 

  • Rose A, Hildebrand PW (2015) NGL viewer: a web application for molecular visualization. Nucleic Acids Res 43:W576–W579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosini G, Cantini M (1987) Killer character in Kluyveromyces yeasts: activity on Kloeckera apiculata. FEMS Microbiol Lett 44:81–84

    Article  Google Scholar 

  • Sáenz-Marta CI, Ballinas-Casarrubias MdL, Rivera-Chavira BE, Nevárez-Moorillón GV (2015) Biosurfactants as useful tools in bioremediation. In: Shiomi N (ed) Advances in bioremediation of wastewater and polluted soil. InTech, Rijeka. doi:10.5772/60751

  • Salgado Vital MJ, Abranches J, Hagler AN, Mendonca-Hagler LC (2002) Mycocinogenic yeasts isolated from Amazon soils of the Maraca ecological station, Roraima-Brazil. Braz J Microbiol 33:230–235

    Article  Google Scholar 

  • Santos A, Marquina D (2004) Ion channel activity by Pichia membranifaciens killer toxin. Yeast 21:151–162

    Article  CAS  PubMed  Google Scholar 

  • Santos A, Marquina D (2011) The transcriptional response of Saccharomyces cerevisiae to proapoptotic concentrations of Pichia membranifaciens killer toxin. Fungal Genet Biol 48:979–989

    Article  CAS  PubMed  Google Scholar 

  • Santos A, Marquina D, Leal JA, Peinado JM (2000) (1→6)-β-Glucan as cell wall receptor for Pichia membranifaciens killer toxin. Appl Environ Microbiol 66:1809–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos A, Marquina D, Barroso J, Peinado JM (2002) (1→6)-β-D-glucan as the cell wall binding site for Debaryomyces hansenii killer toxin. Lett Appl Microbiol 34:95–99

    Article  CAS  PubMed  Google Scholar 

  • Santos A, San Mauro M, Abrusci C, Marquina D (2007) Cwp2p, the plasma membrane receptor for Pichia membranifaciens killer toxin. Mol Microbiol 64:831–843

    Article  CAS  PubMed  Google Scholar 

  • Santos A, San Mauro M, Bravo E, Marquina D (2009) PMKT2, a new killer toxin from Pichia membranifaciens, and its promising biotechnological properties for control of the spoilage yeast Brettanomyces bruxellensis. Microbiology 155:624–634

    Article  CAS  PubMed  Google Scholar 

  • Santos A, Alonso A, Belda I, Marquina D (2013) Cell cycle arrest and apoptosis, two alternative mechanisms for PMKT2 killer activity. Fungal Genet Biol 50:44–54

    Article  CAS  PubMed  Google Scholar 

  • Satora P, Tuszynski T (2005) Biodiversity of yeasts during Plum Wegierka Zwykla spontaneous fermentation. Food Technol Biotechnol 43:277–282

    Google Scholar 

  • Satora P, Tarko T, Sroka P, Blaszczyk U (2014) The influence of Wickerhamomyces anomalus killer yeast on the fermentation and chemical composition of apple wines. FEMS Yeast Res 14:729–740

    Article  CAS  PubMed  Google Scholar 

  • Satwika D, Klassen R, Meinhardt F (2012) Anticodon nuclease encoding virus like elements in yeast. Appl Microbiol Biotechnol 96:345–356

    Article  CAS  PubMed  Google Scholar 

  • Sawant AD, Abdelal AT, Ahearn DG (1989) Purification and characterization of anti-Candida toxin of Pichia anomala WC 65. Antimicrob Agents Chemother 33:48–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaffrath R, Breunig KD (2000) Genetics and molecular physiology of Kluyveromyces lactis. Fungal Genet Biol 30:173–190

    Article  CAS  PubMed  Google Scholar 

  • Schaffrath R, Leidel SA (2017) Wobble uridine modifications – a reason to live, a reason to die?! RNA Biol 23:1–14. doi:10.1080/15476286.2017.1295204

    Article  Google Scholar 

  • Schaffrath R, Meacock PA (1995) Kluyveromyces lactis killer plasmid pGKL2: molecular analysis of an essential gene, ORF5. Yeast 11:615–628

    Article  CAS  PubMed  Google Scholar 

  • Schaffrath R, Meacock PA (1996) A cytoplasmic gene shuffle system in Kluyveromyces lactis: use of epitope-tagging to detect a killer plasmid-encoded gene product. Mol Microbiol 19:545–554

    Article  CAS  PubMed  Google Scholar 

  • Schaffrath R, Meacock PA (2001) An SSB encoded by and operating on linear killer plasmids from Kluyveromyces lactis. Yeast 18:1239–1247

    Article  CAS  PubMed  Google Scholar 

  • Schaffrath R, Meinhardt F (2005) Kluyveromyces lactis zymocin and other plasmid-encoded yeast killer toxins. In: Schmitt MJ, Schaffrath R (eds) Microbial protein toxins, vol 11. Springer, Berlin, pp 133–155

    Chapter  Google Scholar 

  • Schaffrath R, Soond SM, Meacock PA (1995a) The DNA and RNA polymerase structural genes of yeast plasmid pGKL2 are essential loci for plasmid integrity and maintenance. Microbiology 141:2591–2599

    Article  CAS  PubMed  Google Scholar 

  • Schaffrath R, Soond SM, Meacock PA (1995b) Cytoplasmic gene expression in yeast: a plasmid-encoded transcription system in Kluyveromyces lactis. Biochem Soc Trans 23:128

    Article  Google Scholar 

  • Schaffrath R, Meinhardt F, Meacock PA (1996) Yeast killer plasmid pGKL2: molecular analysis of UCS5, a cytoplasmic promoter element essential for ORF5 gene function. Mol Gen Genet 250:286–294

    Article  CAS  PubMed  Google Scholar 

  • Schaffrath R, Meinhardt F, Meacock PA (1999) Molecular manipulation of Kluyveromyces lactis linear DNA plasmids: gene targeting and plasmid shuffles. FEMS Microbiol Lett 178:201–210

    Article  CAS  PubMed  Google Scholar 

  • Schaffrath R, Sasnauskas K, Meacock PA (2000) Use of gene shuffles to study the cytoplasmic transcription system operating on Kluyveromyces lactis linear DNA plasmids. Enzym Microb Technol 26:664–670

    Article  CAS  Google Scholar 

  • Schaffrath R, Abdel-Fattah W, Klassen R, Stark MJR (2014) The diphthamide modification pathway from Saccharomyces cerevisiae – Revisited. Mol Microbiol 94:1213–1226

    Article  CAS  PubMed  Google Scholar 

  • Schlatter DC, Kinkel LL (2014) Global biogeography of Streptomyces antibiotic inhibition, resistance, and resource use. FEMS Microbiol Ecol 88:386–397

    Article  CAS  PubMed  Google Scholar 

  • Schmitt MJ, Breinig F (2002) The viral killer system in yeast: from molecular biology to application. FEMS Microbiol Rev 26:257–276

    Article  CAS  PubMed  Google Scholar 

  • Schmitt MJ, Breinig F (2006) Yeast viral killer toxins: lethality and self-protection. Nat Rev Microbiol 4:212–221

    Article  CAS  PubMed  Google Scholar 

  • Schmitt M, Radler F (1988) Molecular structure of the cell wall receptor for killer toxin KT28 in Saccharomyces cerevisiae. J Bacteriol 170:2192–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt MJ, Neuhausen F (1994) Killer toxin-secreting double-stranded RNA mycoviruses in the yeasts Hanseniaspora uvarum and Zygosaccharomyces bailii. J Virol 68:1765–1772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt MJ, Schernikau G (1997) Construction of a cDNA-based K1/K2/K28 triple killer strain of Saccharomyces cerevisiae. Food Technol Biotechnol 35:281–285

    CAS  Google Scholar 

  • Schmitt MJ, Tipper DJ (1990) K28, a unique double-stranded RNA killer virus of Saccharomyces cerevisiae. Mol Cell Biol 10:4807–4815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt MJ, Tipper DJ (1995) Sequence of the M28 dsRNA: preprotoxin is processed to an α/β heterodimeric protein toxin. Virology 213:341–351

    Article  CAS  PubMed  Google Scholar 

  • Schmitt MJ, Klavehn P, Wang J, Schönig I, Tipper DJ (1996) Cell cycle studies on the mode of action of yeast K28 killer toxin. Microbiology 142:2655–2662

    Article  CAS  PubMed  Google Scholar 

  • Shemyakina TM, Vustin MM, Nesterenko MV, Timokhina EA, Sineoky SP (1991) New killer toxin produced by the yeast Williopsis subsufficiens and Williopsis beijerinckii. Mikrobiologiya 60:501–506

    CAS  Google Scholar 

  • Sinclair RM (2014) Persistence in the shadow of killers. Front Microbiol 5:342

    PubMed  PubMed Central  Google Scholar 

  • Sor F, Fukuhara H (1985) Structure of a linear plasmid of the yeast Kluyveromyces lactis: compact organization of the killer genome. Curr Genet 9:147–155

    Article  CAS  Google Scholar 

  • Sriprakash KS, Batum C (1984) Possible chromosomal location for the killer determinant in Torulopsis glabrata. Curr Genet 8:115–119

    Article  CAS  PubMed  Google Scholar 

  • Stark MJR, Boyd A (1986) The killer toxin of Kluyveromyces lactis: characterization of the toxin subunits and identification of the genes which encode them. EMBO J 5:1995–2002

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stark MJ, Mileham AJ, Romanos MA, Boyd A (1984) Nucleotide sequence and transcription analysis of a linear DNA plasmid associated with the killer character of the yeast Kluyveromyces lactis. Nucleic Acids Res 12:6011–6030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark MJR, Boyd A, Mileham AJ, Romanos MA (1990) The plasmid-encoded killer system of Kluyveromyces lactis: a review. Yeast 6:1–29

    Article  CAS  PubMed  Google Scholar 

  • Starmer WT (1982) Analysis of the community structure of yeasts associated with the decaying stems of cactus. I. Stenocereus gummosus. Microb Ecol 8:71–81

    Article  CAS  PubMed  Google Scholar 

  • Starmer WT, Phaff HJ (1983) Analysis of the community structure of yeasts associated with the decaying stems of cactus. II. Opuntia species. Microb Ecol 9:247–259

    Article  CAS  PubMed  Google Scholar 

  • Starmer WT, Ganter P, Aberddeen V, Lachance MA, Phaff HJ (1987) The ecological role of killer yeasts in natural communities of yeasts. Can J Microbiol 33:783–796

    Article  CAS  PubMed  Google Scholar 

  • Starmer WT, Ganter PF, Aberdeen V (1992) Geographic distribution and genetics of killer phenotypes for the yeast Pichia kluyveri across the United States. Appl Environ Microbiol 58:990–997

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki C, Nikkuni S (1994) The primary and subunit structure of a novel type killer toxin produced by a halotolerant yeast, P. farinosa. J Biol Chem 269:3041–3046

    CAS  PubMed  Google Scholar 

  • Suzuki C, Yamada K, Okada N, Nikkuni S (1989) Isolation and characterization of halotolernat killer yeasts from fermented foods. Agric Biol Chem 53:2593–2597

    CAS  Google Scholar 

  • Suzuki C, Ando Y, Machida S (2001) Interaction of SMKT, a killer toxin produced by Pichia farinosa, with the yeast cell membranes. Yeast 18:1471–1478

    Article  CAS  PubMed  Google Scholar 

  • Takasuka T, Komiyama T, Furuichi Y, Watanabe T (1995) Cell wall synthesis specific cytocidal effect of Hansenula mrakii toxin-1 on Saccharomyces cerevisiae. Cell Mol Biol Res 41:575–581

    CAS  PubMed  Google Scholar 

  • Tao J, Ginsberg I, Banerjee N, Held W, Koltin Y, Bruenn JA (1990) Ustilago maydis KP6 killer toxin: structure, expression in Saccharomyces cerevisiae, and relationship to other cellular toxins. Mol Cell Biol 10:1373–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theisen S, Molkenau E, Schmitt MJ (2000) Wicaltin, a new protein toxin secreted by the yeast Williopsis californica and its broad-spectrum antimycoctic potential. J Microbiol Biotechnol 10:547–550

    CAS  Google Scholar 

  • Tipper DJ, Bostian KA (1984) Double-stranded ribonucleic acid killer systems in yeasts. Microbiol Rev 48:125–156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tokunaga M, Wada N, Hishinuma F (1987) Expression and identification of immunity determinants on linear DNA killer plasmids pGKL1 and pGKL2 in Kluyveromyces lactis. Nucleic Acids Res 15:1031–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokunaga M, Kawamura A, Hishinuma F (1989) Expression of pGKL killer 28K subunit in Saccharomyces cerevisiae: identification of 28K subunit as a killer protein. Nucleic Acids Res 17:3435–3446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uthman S, Liu S, Giorgini F, Stark MJS, Costanzo M, Schaffrath R (2013) Diphtheria disease and genes involved in formation of diphthamide, key effector of the diphtheria toxin. In: Kumar R (ed) Insight and control of infectious disease in global scenario. INTECH Open Access Publisher, pp 333–356

    Google Scholar 

  • Vadasz AS, Vadasz P, Gupthar AS, Abashar ME (2003) Theoretical and experimental evidence of extinction and coexistence of killer and sensitive strains of yeast grown as a mixed culture in water. Int J Food Microbiol 84:157–174

    Article  CAS  PubMed  Google Scholar 

  • Vadkertiová R, Sláviková E (1995) Killer activity of yeasts isolated from the water environment. Can J Microbiol 41:759–766

    Article  PubMed  Google Scholar 

  • Vadkertiová R, Sláviková E (2007) Killer activity of yeasts isolated from natural environments against some medically important Candida species. Pol J Microbiol 56:39–43

    PubMed  Google Scholar 

  • Valzano M, Cecarini V, Cappelli A, Capone A, Bozic J, Cuccioloni M, Epis S, Petrelli D, Angeletti M, Eleuteri AM, Favia G, Ricci I (2016) A yeast strain associated to Anopheles mosquitoes produces a toxin able to kill malaria parasites. Malar J 15:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaughan-Martini A, Rosini G (1989) Killer relationships within the yeast genus Kluyveromyces. Mycologia 81:317–321

    Article  Google Scholar 

  • Vaughan-Martini A, Rosini G, Martini A (1988) Killer sensitivity patterns as a tool for the fingerprinting of strains within the yeast species Kluyveromyces lactis and K. marxianus. Biotechnol Tech 2:293–296

    Article  Google Scholar 

  • Viljoen BC (2006) The ecological interactions. Yeast-yeast, yeast-bacteria, yeast-fungi interactions and yeasts as biocontrol agents. In: Querol A, Fleet G (eds) Yeasts in food and beverages, vol 2. Springer, Berlin, pp 83–110

    Chapter  Google Scholar 

  • Villalba ML, Sáez JS, del Monaco S, Lopes CA, Sangorrín MP (2016) TdKT, a new killer toxin produced by Torulaspora delbrueckii effective against wine spoilage yeasts. Int J Food Microbiol 217:94–100

    Article  CAS  PubMed  Google Scholar 

  • Vondrejs V (1987) Killer system in yeasts: applications to genetics and industry. Microbiol Sci 4:313–316

    CAS  PubMed  Google Scholar 

  • Vustin MM, Babjeva IP, Reshetova IS, Shemyakina TM, Sineoki SP (1991) Taxonomic differentiation of basidiomycetous yeasts by sensitivity to killer toxin of Williopsis pratensis. Mikrobiologiya 60:345–349

    CAS  Google Scholar 

  • Vustin MM, Kalina EN, Babjeva IP, Reshetova IS, Sineoky SP (1993) Killer toxins in the yeast genus Debaryomyces. Mikrobiologiya 62:151–155

    CAS  Google Scholar 

  • Vustin MM, Vavilova EA, Sineoki SP (1988) The use of sensitivity to antibiotics produced by the representatives of the genera Williopsis and Zygowilliopsis for yeast identification. Mikrobiologiya 57:653–657

    CAS  Google Scholar 

  • Walker GM, McLeod AH, Hodgson VJ (1995) Interactions between killer yeasts and pathogenic fungi. FEMS Microbiol Lett 127:213–222

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chi Z, Yue L, Li J (2007a) Purification and characterization of killer toxin from a marine yeast Pichia anomala YF07b against the pathogenic yeast in crab. Curr Microbiol 55:396–401

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chi Z, Yue L, Li J, Li M, Wu L (2007b) A marine killer yeast against the pathogenic yeast strain in crab (Portunus trituberculatus) and an optimization of the toxin production. Microbiol Res 162:77–85

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chi Z, Peng Y, Wang XH, Ru SG, Chi ZM (2012) Purification, characterization and gene cloning of the killer toxin produced by the marine-derived yeast Williopsis saturnus WC91–2. Microbiol Res 167:558–563

    Article  CAS  PubMed  Google Scholar 

  • Weijman ACM, Golubev WI (1987) Carbohydrate patterns and taxonomy of yeasts and yeastlike fungi. Stud Mycol 30:361–371

    Google Scholar 

  • Weiler F, Schmitt MJ (2003) Zygocin, a secreted antifungal toxin of the yeast Zygosaccharomyces bailii, and its effect on sensitive fungal cells. FEMS Yeast Res 3:69–76

    CAS  PubMed  Google Scholar 

  • Wemhoff S, Klassen R, Meinhardt F (2014) Site-directed mutagenesis of the heterotrimeric killer toxin zymocin identifies residues required for early steps in toxin action. Appl Environ Microbiol 80:6549–6559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wickner RB (1992) Double-stranded and single-stranded RNA viruses of Saccharomyces cerevisiae. Annu Rev Microbiol 46:347–375

    Article  CAS  PubMed  Google Scholar 

  • Wickner RB (1996) Double-stranded RNA viruses of Saccharomyces cerevisiae. Microbiol Rev 10:250–265

    Google Scholar 

  • Widder S, Allen RJ, Pfeiffer T, Curtis TP, Wiuf C, Sloan WT, Cordero OX, Brown SP, Momeni B, Shou W, Kettle H, Flint HJ, Haas AF, Laroche B, Kreft JU, Rainey PB, Freilich S, Schuster S, Milferstedt K, van der Meer JR, Grobetakopf T, Huisman J, Free A, Picioreanu C, Quince C, Klapper I, Labarthe S, Smets BF, Wang H, Isaac Newton Institute Fellows, Soyer OS (2016) Challenges in microbial ecology: building predictive understanding of community function and dynamics. ISME J 10:2557–2568

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams ST, Vickers JC (1986) The ecology of antibiotic production. Microb Ecol 12:43–52

    Article  CAS  PubMed  Google Scholar 

  • Wilson C, Whittaker PA (1989) Factors affecting activity and stability of the Kluyveromyces lactis killer toxin. Appl Environ Microbiol 55:695–699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wloch-Salamon DM, Gerla D, Hoekstra RF, de Visser JA (2008) Effect of dispersal and nutrient availability on the competitive ability of toxin-producing yeast. Proc Biol Sci 275:535–541

    Article  PubMed  PubMed Central  Google Scholar 

  • Wojcik M, Kordowska-Wiater M (2015) The occurrence of killer activity in yeasts isolated from natural habitats. Acta Biochim Pol 62:821–824

    Article  CAS  PubMed  Google Scholar 

  • Woods DR, Bevan EA (1968) Studies on the nature of the killer factor produced by Saccharomyces cerevisiae. J Gen Microbiol 51:115–126

    Article  CAS  PubMed  Google Scholar 

  • Worsham PL, Bolen PL (1990) Killer toxin production in Pichia acaciae is associated with linear DNA plasmids. Curr Genet 18:77–80

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Iratani T, Hirata H, Imai M, Yamaguchi H (1986a) Killer toxin from Hansenula mrakii selectively inhibits cell wall synthesis in a sensitive yeast. FEBS Lett 197:50–54

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Imai M, Tachibana K, Mayumi M (1986b) Application of monoclonal antibodies to the isolation and characterization of a killer toxin secreted by Hansenula mrakii. FEBS Lett 195:253–257

    Article  CAS  PubMed  Google Scholar 

  • Yokomori Y, Akyiama H, Shimizu K (1988) Toxins of a wild Candida killer yeast with a novel killer property. Agric Biol Chem 52:2797–2801

    CAS  Google Scholar 

  • Young TW, Yagiu M (1978) A comparison of the killer character in different yeasts and its classification. Antonie Van Leeuwenhoek 44:59–77

    Article  CAS  PubMed  Google Scholar 

  • Zekhnov AM, Soom YO, Nesterova GF (1989) New test strains for detecting the antagonistic activity of yeasts. Mikrobiologiya 58:807–811

    Google Scholar 

  • Zhu H, Bussey H (1989) The K1 toxin of Saccharomyces cerevisiae kills spheroplasts of many yeast species. Appl Environ Microbiol 55:2105–2107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Bussey H (1991) Mutational analysis of the functional domains of yeast K1 killer toxin. Mol Cell Biol 11:175–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YS, Zhang XY, Cartwright CP, Tipper DJ (1992) Kex2-dependent processing of yeast K1 killer preprotoxin includes cleavage at ProArg-44. Mol Microbiol 6:511–520

    Article  CAS  PubMed  Google Scholar 

  • Zink S, Mehlgarten C, Kitamoto HK, Nagase J, Jablonowski D, Dickson RC, Stark MJR, Schaffrath R (2005) Mannosyl-diinositolphospho-ceramide, the major yeast plasma membrane sphingolipid, governs toxicity of Kluyveromyces lactis zymocin. Eukaryot Cell 4:879–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorg J, Kilian S, Radler F (1988) Killer toxin producing strains of the yeasts Hanseniaspora uvarum and Pichia kluyveri. Arch Microbiol 149:261–267

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roland Klassen or Philip F. Ganter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Klassen, R., Schaffrath, R., Buzzini, P., Ganter, P.F. (2017). Antagonistic Interactions and Killer Yeasts. In: Buzzini, P., Lachance, MA., Yurkov, A. (eds) Yeasts in Natural Ecosystems: Ecology . Springer, Cham. https://doi.org/10.1007/978-3-319-61575-2_9

Download citation

Publish with us

Policies and ethics