Skip to main content

Commensalism: The Case of the Human Zymobiome

  • Chapter
  • First Online:
Yeasts in Natural Ecosystems: Ecology

Abstract

The mycological community of humans is subject to numerous interactions, for example, among cohabitating fungi, other microbes, their hosts, as well as biotic and abiotic factors the host is exposed to. Yeasts form an important part of this community. While human-colonising yeasts receive high attention as opportunistic pathogens, they are less recognised as commensals. The ecology of the yeast-human relationship bears many open questions. This includes the potential effects of colonising yeasts on humans. Negative effects may be linked to an imbalance of total microbiota, and literature often associated the state of health with high mycological diversity. The mycological communities are less well studied compared to the bacterial components, and a systematic evaluation of the fungal diversity that colonises humans is still difficult. Literature suggests that the same yeast species that are known as frequent opportunists (e.g. Candida albicans) may also play beneficial roles, while dominantly as beneficial recognised yeasts (e.g. Saccharomyces cerevisiae) may turn infective in states of immune impairment. The yet incomplete list of factors that influence yeast diversity in humans includes age, diet, body site, medical treatments, bacterial community composition, and immune status. Further studies of this area are hoped to extend the knowledge on healthy yeast diversity and the interactions in which yeasts participate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Iterum nominanda (to be renamed).

References

  • Anderson HW (1917) Yeast-like fungi of the human intestinal tract. J Infect Dis 21:341–386

    Article  Google Scholar 

  • Angebault C, Djossou F, Abélanet S, Permal E, Ben Soltana M, Diancourt L, Bouchier C, Woerther PL, Catzeflis F, Andremont A, d’Enfert C, Bougnoux ME (2013) Candida albicans is not always the preferential yeast colonizing humans: a study in Wayampi Amerindians. J Infect Dis 208:1705–1716

    Article  PubMed  Google Scholar 

  • Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Doré J, MetaHIT Consortium (additional members), Weissenbach J, Ehrlich DS, Bork P (2011) Enterotypes of the human gut microbiome. Nature 473:174–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashford BK (1915) Relation of the genus “Monila” to certain fermentative conditions in the intestinal tract in Porto Rico. JAMA 64:1893–1896

    Article  Google Scholar 

  • Benadé E, Stone W, Mouton M, Postma F, Wilsenach J, Botha A (2016) Binary interactions of antagonistic bacteria with Candida albicans under aerobic and anaerobic conditions. Microb Ecol 71:645–659

    Article  PubMed  Google Scholar 

  • Bittinger K, Charlson ES, Loy E, Shirley DJ, Haas AR, Laughlin A, Yi Y, Wu GD, Lewis JD, Frank I, Cantu E, Diamond JM, Christie JD, Collman RG, Bushman FD (2014) Improved characterization of medically relevant fungi in the human respiratory tract using next-generation sequencing. Genome Biol 15:487

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford LL, Ravel J (2017) The vaginal mycobiome: a contemporary perspective on fungi in women’s health and diseases. Virulence 8:342–351

    Article  PubMed  Google Scholar 

  • Casadevall A (2007) Determinants of virulence in the pathogenic fungi. Fungal Biol Rev 21:130–132

    Article  PubMed  PubMed Central  Google Scholar 

  • Charlson ES, Diamond JM, Bittinger K, Fitzgerald AS, Yadav A, Haas AR, Bushman FD, Collman RG (2012) Lung enriched organisms and aberrant bacterial and fungal respiratory microbiota after lung transplant. Am J Respir Crit Care Med 186:536–545

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Chen Z, Guo R, Chen N, Lu H, Huang S, Wang J, Li L (2011) Correlation between gastrointestinal fungi and varying degrees of chronic hepatitis B virus infection. Diagn Microbiol Infect Dis 70:492–498

    Article  PubMed  Google Scholar 

  • Clavaud C, Jourdain R, Bar-Hen A, Tichit M, Bouchier C, Pouradier F, El Rawadi C, Guillot J, Ménard-Szczebara F, Breton L, Latgé JP, Mouyna I (2013) Dandruff is associated with disequilibrium in the proportion of the major bacterial and fungal populations colonizing the scalp. PLoS One 8:e58203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cogen AL, Nizet V, Gallo RL (2008) Skin microbiota: a source of disease or defence? Br J Dermatol 158:442–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui L, Morris A, Ghedin E (2013) The human mycobiome in health and disease. Genome Med 5:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui L, Lucht L, Tipton L, Rogers MB, Fitch A, Kessinger C, Camp D, Kingsley L, Leo N, Greenblatt RM, Fong S, Stone S, Dermand JC, Kleerup EC, Huang L, Morris A, Ghedin E (2015) Topographic diversity of the respiratory tract mycobiome and alteration in HIV and lung disease. Am J Respir Crit Care Med 191:932–942

    Article  PubMed  PubMed Central  Google Scholar 

  • Daniel HM, Lachance MA, Kurtzman CP (2014) On the reclassification of species assigned to Candida and other anamorphic ascomycetous yeast genera based on phylogenetic circumscription. Antonie Van Leeuwenhoek 106:67–84

    Article  PubMed  Google Scholar 

  • David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2013) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Sordi L, Mühlschlegel FA (2009) Quorum sensing and fungal bacterial interactions in Candida albicans: a communicative network regulating microbial coexistence and virulence. FEMS Yeast Res 9:990–999

    Article  PubMed  CAS  Google Scholar 

  • Delhaes L, Monchy S, Fréalle E, Hubans C, Salleron J, Leroy S, Prevotat A, Wallet F, Wallaert B, Dei-Cas E, Sime-Ngando T, Chabé M, Viscogliosi E (2012) The airway microbiota in cystic fibrosis: a complex fungal and bacterial community-implications for therapeutic management. PLoS One 7:e36313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • d’Enfert C (2009) Hidden killers: persistence of opportunistic fungal pathogens in the human host. Curr Opin Microbiol 12:358–364

    Article  PubMed  Google Scholar 

  • Diaz PI, Strausbaugh LD, Dongari-Bagtzoglou A (2014) Fungal-bacterial interactions and their relevance to oral health: linking the clinic and the bench. Front Cell Infect Microbiol 4:101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diaz PI, Hong BY, Dupuy AK, Strausbaugh LD (2017) Mining the oral mycobiome: methods, components, and meaning. Virulence 8:313–323

    Article  CAS  PubMed  Google Scholar 

  • Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB (2016) The microbiome and the respiratory tract. Annu Rev Physiol 78:481–504

    Article  CAS  PubMed  Google Scholar 

  • Drell T, Lillsaar T, Tummeleht L, Simm J, Aaspõllu A, Väin E, Saarma I, Salumets A, Donders GG, Metsis M (2013) Characterization of the vaginal micro- and mycobiome in asymptomatic reproductive-age Estonian women. PLoS One 8:e54379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupuy AK, David MS, Li L, Heider TN, Peterson JD, Montano EA, Dongari-Bagtzoglou A, Diaz PI, Strausbaugh LD (2014) Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: discovery of Malassezia as a prominent commensal. PLoS One 9:e90899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Enache-Angoulvant A, Hennequin C (2005) Invasive Saccharomyces infection: a comprehensive review. Clin Infect Dis 41:1559–1568

    Article  PubMed  Google Scholar 

  • Erb-Downward JR, Falkowski NR, Mason KL, Muraglia R, Huffnagle GB (2013) Modulation of postantibiotic bacterial community reassembly and host response by Candida albicans. Sci Rep 3:2191

    Article  PubMed  PubMed Central  Google Scholar 

  • Erturk-Hasdemir D, Kasper DL (2013) Resident commensals shaping immunity. Curr Opin Immunol 25:450–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falsetta ML, Klein MI, Colonne PM, Scott-Anne K, Gregoire S, Pai CH, Gonzalez-Begne M, Watson G, Krysan DJ, Bowen WH, Koo H (2014) Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect Immun 82:1968–1981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, Schoenfeld D, Nomicos E, Park M, NIH Intramural Sequencing Center Comparative Sequencing Program, Kong HH, Segre JA (2013) Topographic diversity of fungal and bacterial communities in human skin. Nature 498:367–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaitanis G, Magiatis P, Hantschke M, Bassukas ID, Velegraki A (2012) The Malassezia genus in skin and systemic diseases. Clin Microbiol Rev 25:106–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, Gillevet PM (2010) Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog 6:e1000713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouba N, Drancourt M (2015) Digestive tract mycobiota: a source of infection. Med Mal Infect 45:9–16

    Article  CAS  PubMed  Google Scholar 

  • Gouba N, Raoult D, Drancourt M (2014) Eukaryote culturomics of the gut reveals new species. PLoS One 9:e106994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo R, Zheng N, Lu H, Yin H, Yao J, Chen Y (2012) Increased diversity of fungal flora in the vagina of patients with recurrent vaginal candidiasis and allergic rhinitis. Microb Ecol 64:918–927

    Article  PubMed  Google Scholar 

  • Hallen-Adams HE, Suhr MJ (2017) Fungi in the healthy human gastrointestinal tract. Virulence 8:352–358

    Article  CAS  PubMed  Google Scholar 

  • Hallen-Adams HE, Kachman SD, Kim J, Legge RM, Martınez I (2015) Fungi inhabiting the healthy human gastrointestinal tract: a diverse and dynamic community. Fungal Ecol 15:9–17

    Article  Google Scholar 

  • Harding CR, Moore AE, Rogers JS, Meldrum H, Scott AE, McGlone FP (2002) Dandruff: a condition characterized by decreased levels of intercellular lipids in scalp stratum corneum and impaired barrier function. Arch Dermatol Res 294:221–230

    Article  CAS  PubMed  Google Scholar 

  • Hatoum R, Labrie S, Fliss I (2012) Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Front Microbiol 3:421

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, Lewis JD, Bushman FD (2013) Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One 8:e66019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogan DA, Vik A, Kolter R (2004) A Pseudomonas aeruginosa quorum sensing molecule influences Candida albicans morphology. Mol Microbiol 54:1212–1223

    Article  CAS  PubMed  Google Scholar 

  • Huffnagle GB, Noverr MC (2013) The emerging world of the fungal microbiome. Trends Microbiol 21:334–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP, Brown J, Becker CA, Fleshner PR, Dubinsky M, Rotter JI, Wang HL, McGovern DP, Brown GD, Underhill DM (2012) Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 336:1314–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imabayashi Y, Moriyama M, Takeshita T, Ieda S, Hayashida JN, Tanaka A, Maehara T, Furukawa S, Ohta M, Kubota K, Yamauchi M, Ishiguro N, Yamashita Y, Nakamura S (2016) Molecular analysis of fungal populations in patients with oral candidiasis using next-generation sequencing. Sci Rep 6:28110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo JH, Deming C, Kennedy EA, Conlan S, Polley EC, Ng WL, NISC Comparative Sequencing Program, Segre JA, Kong HH (2016) Diverse human skin fungal communities in children converge in adulthood. J Invest Dermatol 136:2356–2363

    Article  CAS  PubMed  Google Scholar 

  • Jo JH, Kennedy EA, Kong HH (2017) Topographical and physiological differences of the skin mycobiome in health and disease. Virulence 8:324–333

    Article  PubMed  Google Scholar 

  • Jung WH, Croll D, Cho JH, Kim YR, Lee YW (2015) Analysis of the nasal vestibule mycobiome in patients with allergic rhinitis. Mycoses 58:167–172

    Article  PubMed  Google Scholar 

  • Kalan L, Loesche M, Hodkinson BP, Heilmann K, Ruthel G, Gardner SE, Grice EA (2016) Redefining the chronic-wound microbiome: fungal communities are prevalent, dynamic, and associated with delayed healing. MBio 7:e01058-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Kennedy MJ, Volz PA (1985) Effect of various antibiotics on gastrointestinal colonization and dissemination by Candida albicans. Sabouraudia 23:265–273

    Article  CAS  PubMed  Google Scholar 

  • Kerr JR (1999) Bacterial inhibition of fungal growth and pathogenicity. Microb Ecol Health Dis 11:129–142

    Article  Google Scholar 

  • Kim YG, Udayanga KG, Totsuka N, Weinberg JB, Nunez G, Shibuya A (2014) Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE2. Cell Host Microbe 15:95–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Clark ST, Surendra A, Copeland JK, Wang PW, Ammar R, Collins C, Tullis DE, Nislow C, Hwang DM, Guttman DS, Cowen LE (2015) Global analysis of the fungal microbiome in cystic fibrosis patients reveals loss of function of the transcriptional repressor Nrg1 as a mechanism of pathogen adaptation. PLoS Pathog 11:e1005308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klotz SA, Gaur NK, De Armond R, Sheppard D, Khardori N, Edwards JE Jr, Lipke PN, El-Azizi M (2007) Candida albicans Als proteins mediate aggregation with bacteria and yeasts. Med Mycol 45:363–370

    Article  CAS  PubMed  Google Scholar 

  • Kostoulias X, Murray GL, Cerqueira GM, Kong JB, Bantun F, Mylonakis E, Khoo CA, Peleg AY (2016) Impact of a cross-kingdom signalling molecule of Candida albicans on Acinetobacter baumannii physiology. Antimicrob Agents Chemother 60:161–167

    Article  CAS  Google Scholar 

  • Kramer R, Sauer-Heilborn A, Welte T, Guzman CA, Abraham WR, Höfle MG (2015) Cohort study of air way mycobiome in adult cystic fibrosis patients: differences in community structure between fungi and bacteria reveal predominance of transient fungal elements. J Clin Microbiol 53:2900–2907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause R, Halwachs B, Thallinger GG, Klymiuk I, Gorkiewicz G, Hoenigl M, Prattes J, Valentin T, Heidrich K, Buzina W, Salzer HJ, Rabensteiner J, Prüller F, Raggam RB, Meinitzer A, Moissl-Eichinger C, Högenauer C, Quehenberger F, Kashofer K, Zollner-Schwetz I (2016) Characterisation of Candida within the mycobiome/microbiome of the lower respiratory tract of ICU patients. PLoS One 11:e0155033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krause R, Moissl-Eichinger C, Halwachs B, Gorkiewicz G, Berg G, Valentin T, Prattes J, Högenauer C, Zollner-Schwetz I (2017) Mycobiome in the lower respiratory tract – a clinical perspective. Front Microbiol 7:2169

    Article  PubMed  PubMed Central  Google Scholar 

  • Leung MHY, Chan KCK, Lee PKH (2016) Skin fungal community and its correlation with bacterial community of urban Chinese individuals. Microbiome 4:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Liguori G, Lamas B, Richard ML, Brandi G, da Costa G, Hoffmann TW, Di Simone MP, Calabrese C, Poggioli G, Langella P, Campieri M, Sokol H (2016) Fungal dysbiosis in mucosa-associated microbiota of Crohn’s disease patients. J Crohns Colitis 10:296–305

    Article  PubMed  Google Scholar 

  • Lindsay AK, Hogan DA (2014) Candida albicans: molecular interactions with Pseudomonas aeruginosa and Staphylococcus aureus. Fungal Biol Rev 28:85–96

    Article  Google Scholar 

  • Liu X-Z, Wang Q-M, Göker M, Groenewald M, Kachalkin AV, Lumbsch HT, Millanes AM, Wedin M, Yurkov AM, Boekhout T, Bai FY (2016) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147

    Article  PubMed Central  Google Scholar 

  • Martin IW, Tonner R, Trivedi J, Miller H, Lee R, Liang X, Rotello L, Isenbergh E, Anderson J, Perl T, Zhang SX (2017) Saccharomyces boulardii probiotic-associated fungemia: questioning the safety of this preventive probiotic’s use. Diagn Microbiol Infect Dis 87:286–288

    Article  PubMed  Google Scholar 

  • Mason KL, Erb Downward JR, Mason KD, Falkowski NR, Eaton KA, Kao JY, Young VB, Huffnagle GB (2012) Candida albicans and bacterial microbiota interactions in the cecum during recolonization following broad-spectrum antibiotic therapy. Infect Immun 80:3371–3380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McFarland LV (2010) Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J Gastroenterol 16:2202–2222

    Article  PubMed  PubMed Central  Google Scholar 

  • Miranda LN, van der Heijden IM, Costa SF, Sousa AP, Sienra RA, Gobara S, Santos CR, Lobo RD, Pessoa VP Jr, Levin AS (2009) Candida colonisation as a source for candidaemia. J Hosp Infect 72:9–16

    Article  CAS  PubMed  Google Scholar 

  • Morales DK, Grahl N, Okegbe C, Dietrich LEP, Jacobs NJ, Hogan DA (2013) Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines. MBio 4:e00526-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moyes DL, Naglik JR (2012) The mycobiome: influencing IBD severity. Cell Host Microbe 11:551–552

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Chandra J, Retuerto M, Sikaroodi M, Brown RE, Jurevic R, Salata RA, Lederman MM, Gillevet PM, Ghannoum MA (2014) Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathog 10:e1003996

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjee PK, Sendid B, Hoarau G, Colombel JF, Poulain D, Ghannoum MA (2015) Mycobiota in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 12:77–87

    Article  PubMed  Google Scholar 

  • Murdoch TB, Xu W, Stempak JM, Landers C, Targan SR, Rotter JI, Silverberg MS (2012) Pattern recognition receptor and autophagy gene variants are associated with development of antimicrobial antibodies in Crohn’s disease. Inflamm Bowel Dis 18:1743–1748

    Article  PubMed  PubMed Central  Google Scholar 

  • Neville AB, d’Enfert C, Bougnoux ME (2015) Candida albicans commensalism in the gastrointestinal tract. FEMS Yeast Res 15:fov081

    Article  PubMed  CAS  Google Scholar 

  • Nguyen LD, Viscogliosi E, Delhaes L (2015) The lung mycobiome: an emerging field of the human respiratory microbiome. Front Microbiol 6:89

    PubMed  PubMed Central  Google Scholar 

  • Nilsson RH, Ryberg M, Kristiansson E, Abarenkov K, Larsson KH, Kõljalg U (2006) Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLoS One 1:e59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noverr MC, Huffnagle GB (2004) Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect Immun 72:6206–6210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noverr MC, Phare SM, Toews GB, Coffey MJ, Huffnagle GB (2001) Pathogenic yeasts Cryptococcus neoformans and Candida albicans produce immunomodulatory prostaglandins. Infect Immun 69:2957–2963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noverr MC, Noggle RM, Toews GB, Huffnagle GB (2004) Role of antibiotics and fungal microbiota in driving pulmonary allergic responses. Infect Immun 72:4996–5003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noverr MC, Falkowski NR, McDonald RA, McKenzie AN, Huffnagle GB (2005) Development of allergic airway disease in mice following antibiotic therapy and fungal microbiota increase: role of host genetics, antigen, and interleukin-13. Infect Immun 73:30–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nucci M, Anaissie E (2001) Revisiting the source of candidemia: skin or gut? Clin Infect Dis 33:1959–1967

    Article  CAS  PubMed  Google Scholar 

  • Park HK, Ha MH, Park SG, Kim MN, Kim BJ, Kim W (2012) Characterization of the fungal microbiota (mycobiome) in healthy and dandruff-afflicted human scalps. PLoS One 7:e32847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peleg AY, Tampakakis E, Fuchs BB, Eliopoulos GM, Moellering RC, Mylonakis E (2008) Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans. Proc Natl Acad Sci USA 105:14585–14590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peleg AY, Hogan DA, Mylonakis E (2010) Medically important bacterial-fungal interactions. Nat Rev Microbiol 8:340–349

    Article  CAS  PubMed  Google Scholar 

  • Peters BM, Palmer GE, Nash AK, Lilly EA, Fidel PL Jr, Noverr MC (2014) Fungal morphogenetic pathways are required for the hallmark inflammatory response during Candida albicans vaginitis. Infect Immun 82:532–543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pfaller M, Neofytos D, Diekema D, Azie N, Meier-Kriesche HU, Quan SP, Horn D (2012) Epidemiology and outcomes of candidemia in 3648 patients: data from the prospective antifungal therapy (PATH alliance) registry, 2004–2008. Diagn Microbiol Infect Dis 74:323–331

    Article  PubMed  Google Scholar 

  • Prohic A, Ozegovic L (2007) Malassezia species isolated from lesional and non-lesional skin in patients with pityriasis versicolor. Mycoses 50:58–63

    Article  PubMed  Google Scholar 

  • Richard ML, Lamas B, Liguori G, Hoffmann TW, Sokol H (2015) Gut fungal microbiota: the Yin and Yang of inflammatory bowel disease. Inflamm Bowel Dis 21:656–665

    Article  PubMed  Google Scholar 

  • Roetzer A, Gabaldón T, Schüller C (2011) From Saccharomyces cerevisiae to Candida glabrata in a few easy steps: important adaptations for an opportunistic pathogen. FEMS Microbiol Lett 314:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth RR, James WD (1988) Microbial ecology of the skin. Annu Rev Microbiol 42:441–464

    Article  CAS  PubMed  Google Scholar 

  • Samuelsen ABC, Schrezenmeir J, Knutsen SH (2014) Effects of orally administered yeast-derived beta-glucans: a review. Mol Nutr Food Res 58:183–193

    Article  CAS  PubMed  Google Scholar 

  • Saunte DM, Tarazooie B, Arendrup MC, de Hoog GS (2012) Black yeast-like fungi in skin and nail: it probably matters. Mycoses 55:161–167

    CAS  PubMed  Google Scholar 

  • Schommer NN, Gallo RL (2013) Structure and function of the human skin microbiome. Trends Microbiol 21:660–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seibold F, Stich O, Hufnagl R, Kamil S, Scheurlen M (2001) Anti-Saccharomyces cerevisiae antibodies in inflammatory bowel disease: a family study. Scand J Gastroenterol 36:196–201

    Article  CAS  PubMed  Google Scholar 

  • Shirtliff ME, Peters BM, Jabra-Rizk MA (2009) Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol Lett 299:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobel JD (2007) Vulvovaginal candidosis. Lancet 369:1961–1971

    Article  PubMed  Google Scholar 

  • Sokol H, Leducq V, Aschard H, Pham HP, Jegou S, Landman C, Cohen D, Liguori G, Bourrier A, Nion-Larmurier I, Cosnes J, Seksik P, Langella P, Skurnik D, Richard ML, Beaugerie L (2017) Fungal microbiota dysbiosis in IBD. Gut 66:1039–1048

    Article  PubMed  Google Scholar 

  • Standaert-Vitse A, Jouault T, Vandewalle P, Mille C, Seddik M, Sendid B, Mallet JM, Colombel JF, Poulain D (2006) Candida albicans is an immunogen for anti-Saccharomyces cerevisiae antibody markers of Crohn’s disease. Gastroenterology 130:1764–1775

    Article  CAS  PubMed  Google Scholar 

  • Stier H, Ebbeskotte V, Gruenwald J (2014) Immune-modulatory effects of dietary yeast beta-1,3/1,6-D-glucan. Nutr J 13:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strati F, Di Paola M, Stefanini I, Albanese D, Rizzetto L, Lionetti P, Calabrò A, Jousson O, Donati C, Cavalieri D, De Filippo C (2016) Age and gender affect the composition of fungal population of the human gastrointestinal tract. Front Microbiol 7:1227

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugita T, Yamazaki T, Makimura K, Cho O, Yamada S, Ohshima H, Mukai C (2016) Comprehensive analysis of the skin fungal microbiota of astronauts during a half-year stay at the international space station. Med Mycol 54:232–239

    Article  PubMed  Google Scholar 

  • Suhr M, Hallen-Adams HE (2015) The human gut mycobiome: pitfalls and potentials – a mycologist’s perspective. Mycologia 107:1057–1073

    Article  CAS  PubMed  Google Scholar 

  • Suhr MJ, Banjara N, Hallen-Adams HE (2016) Sequence-based methods for detecting and evaluating the human gut mycobiome. Lett Appl Microbiol 62:209–215

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Iliev ID, Brown J, Underhill DM, Funari VA (2015) Mycobiome: approaches to analysis of intestinal fungi. J Immunol Methods 421:112–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tati S, Davidow P, McCall A, Hwang-Wong E, Rojas IG, Cormack B, Edgerton M (2016) Candida glabrata binding to Candida albicans hyphae enables its development in oropharyngeal candidiasis. PLoS Pathog 12:e1005522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tipton L, Ghedin E, Morris A (2017) The lung mycobiome in the next-generation sequencing era. Virulence 8:334–341

    Article  CAS  PubMed  Google Scholar 

  • Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249

    Article  CAS  PubMed  Google Scholar 

  • Tyc KM, Herwald SE, Hogan JA, Pierce JV, Klipp E, Kumamoto C (2016) The game theory of Candida albicans colonisation dynamics reveals host-status responsive gene expression. BMC Syst Biol 10:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Underhill DM, Iliev ID (2013) Fungal mycobiome as probiotics, diagnostics and therapeutics. International Application No. PCT/US2013/038466

    Google Scholar 

  • Underhill DM, Iliev ID (2014) The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol 14:405–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Underhill DM, Pearlman E (2015) Immune interactions with pathogenic and commensal fungi: a two-way street. Immunity 43:845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Woerden HC, Gregory C, Brown R, Marchesi JR, Hoogendoorn B, Matthews IP (2013) Differences in fungi present in induced sputum samples from asthma patients and non-atopic controls: a community based case control study. BMC Infect Dis 13:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Wade WG (2013) The oral microbiome in health and disease. Pharmacol Res 69:137–143

    Article  CAS  PubMed  Google Scholar 

  • Wang ZK, Yang YS, Stefka AT, Sun G, Peng LH (2014) Fungal microbiota and digestive diseases. Aliment Pharmacol Ther 39:751–766

    Article  CAS  PubMed  Google Scholar 

  • Wheeler ML, Limon JJ, Bar AS, Leal CA, Gargus M, Tang J, Brown J, Funari VA, Wang HL, Crother TR, Arditi M, Underhill DM, Iliev ID (2016) Immunological consequences of intestinal fungal dysbiosis. Cell Host Microbe 19:865–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White BA, Creedon DJ, Nelson KE, Wilson BA (2011) The vaginal microbiome in health and disease. Trends Endocrinol Metab 22:389–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organisation (2017) http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1

  • Xu H, Sobue T, Thompson A, Xie Z, Poon K, Ricker A, Cervantes J, Diaz PI, Dongari-Bagtzoglou A (2013) Streptococcal co-infection augments Candida pathogenicity by amplifying the mucosal inflammatory response. Cell Microbiol 16:214–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young G, Resca HG, Sullivan MT (1951) The yeasts of the normal mouth and their relation to salivary acidity. J Dent Res 30:426–430

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to João Inácio or Heide-Marie Daniel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Inácio, J., Daniel, HM. (2017). Commensalism: The Case of the Human Zymobiome. In: Buzzini, P., Lachance, MA., Yurkov, A. (eds) Yeasts in Natural Ecosystems: Ecology . Springer, Cham. https://doi.org/10.1007/978-3-319-61575-2_8

Download citation

Publish with us

Policies and ethics