Skip to main content

Mutualism in Yeasts

  • Chapter
  • First Online:
Yeasts in Natural Ecosystems: Ecology

Abstract

Yeasts are often associated with macro- and microorganisms, but these interactions can vary from mutually beneficial to antagonistic. In this chapter, we review mutually beneficial interactions involving yeasts. First, we describe some ways in which yeasts may benefit from the metabolism or actions of other species. Next, we describe the characteristics of yeasts that could benefit other organisms, including rapid growth, high nutrient content, detoxification, and the production of metabolic by-products. We highlight in detail a few of the types of interactions that most resemble mutualisms between yeasts and other organisms for: (1) yeast interactions with animals (vertebrate and invertebrate), (2) yeast interactions with plants, (3) yeast interactions with other microorganisms, and (4) multispecies interactions, including pollination. We necessarily focus on recently published work. We indicate where good evidence exists for mutualism and where more results will be required to demonstrate mutual benefit. Finally, we conclude the chapter with directions for future work, including how current technological approaches may be combined with manipulative experiments to allow rigorous tests of the mutualistic nature of yeast associations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams AS, Six DL, Adams SM, Holben WE (2008) In vitro interactions between yeasts and bacteria and the fungal symbionts of the mountain pine beetle (Dendroctonus ponderosae). Microb Ecol 56:460–466

    Article  PubMed  Google Scholar 

  • Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14:1–31

    Article  CAS  Google Scholar 

  • Anagnostou C, Dorsch M, Rohlfs M (2010a) Influence of dietary yeasts on Drosophila melanogaster life-history traits. Entomol Exp Appl 136:1–11

    Article  Google Scholar 

  • Anagnostou C, LeGrand EA, Rohlfs M (2010b) Friendly food for fitter flies? Influence of dietary microbial species on food choice and parasitoid resistance in Drosophila. Oikos 119:533–541

    Article  Google Scholar 

  • Arcuri SL, Pagnocca FC, Da Paixão Melo WG, Nagamoto NS, Komura DL, Rodrigues A (2014) Yeasts found on an ephemeral reproductive caste of the leaf-cutting ant Atta sexdens rubropilosa. A van Leeuwenhoek 106:475–487

    Article  Google Scholar 

  • Becher PG, Flick G, Rozpędowska E, Schmidt A, Hagman A, Lebreton S, Larsson MC, Hansson BS, Piškur J, Witzgall P, Bengtsson M (2012) Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct Ecol 26:822–828

    Article  Google Scholar 

  • Beck JJ, Vannette RL (2017) Harnessing insect-microbe chemical communications to control insect pests of agricultural systems. J Agric Food Chem 65:23–28

    Article  CAS  PubMed  Google Scholar 

  • Begon M (1982) Yeasts and Drosophila. In: Ashburner M, Carson HL, Thompson JN (eds) The genetics and biology of Drosophila, vol 3B. Academic Press, New York

    Google Scholar 

  • Blackwell M (2017) Yeast in insects and other invertebrates. In: Buzzini P, Lachance MA, Yurkov A (eds) Yeasts in natural ecosystems: diversity. Springer International Publishing, pp 397–433

    Google Scholar 

  • Blankenship JR, Mitchell AP (2006) How to build a biofilm: a fungal perspective. Curr Opin Microbiol 9:588–594

    Article  CAS  PubMed  Google Scholar 

  • Boby VU, Balakrishna AN, Bagyaraj DJ (2008) Interaction between Glomus mosseae and soil yeasts on growth and nutrition of cowpea. Microbiol Res 163:693–700

    Article  CAS  PubMed  Google Scholar 

  • Botes A, Boekhout T, Hagen F, Vismer H, Swart J, Botha A (2009) Growth and mating of Cryptococcus neoformans var. grubii on woody debris. Microb Ecol 57:757–765

    Article  CAS  PubMed  Google Scholar 

  • Boucher DH, James S, Keeler KH (1982) The ecology of mutualism. Annu Rev Ecol Syst 13:315–347

    Article  Google Scholar 

  • Boundy-Mills K (2006) Methods for investigating yeast biodiversity. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 67–100

    Chapter  Google Scholar 

  • Bronstein JL (1994) Our Current understanding of mutualism. Q Rev Biol 69:31–51

    Article  Google Scholar 

  • Brysch-Herzberg M (2004) Ecology and taxonomy of yeasts associated with the plant-bumblebee mutualism in central Europe. FEMS Microbiol Ecol 50:87–100

    Article  CAS  PubMed  Google Scholar 

  • Burgaud G, Woehlke S, Rédou V, Orsi W, Beaudoin D, Barbier G, Biddle JF, Edgcomb VP (2013) Deciphering the presence and activity of fungal communities in marine sediments using a model estuarine system. Aquat Microb Ecol 70:45–62

    Article  Google Scholar 

  • Burmølle M, Ren D, Bjarnsholt T, Sørensen SJ (2014) Interactions in multispecies biofilms: do they actually matter? Trends Microbiol 22:84–91

    Article  PubMed  CAS  Google Scholar 

  • Buser CC, Newcomb RD, Gaskett AC, Goddard MR (2014) Niche construction initiates the evolution of mutualistic interactions. Ecol Lett 17:1257–1264

    Article  PubMed  Google Scholar 

  • Cafarchia C, Camarda A, Romito D, Campolo M, Quaglia NC, Tullio D, Otranto D (2006) Occurrence of yeasts in cloacae of migratory birds. Mycopathologia 161:229–234

    Article  CAS  PubMed  Google Scholar 

  • Christiaens JF, Franco LM, Cools TL, de Meester L, Michiels J, Wenseleers T, Hassan BA, Yaksi E, Verstrepen KJ (2014) The fungal aroma gene ATF1 promotes dispersal of yeast cells through insect vectors. Cell Rep 9:425–432

    Article  CAS  PubMed  Google Scholar 

  • Clarke RT, Di Menna ME (1961) Yeasts from the bovine rumen. J Gen Microbiol 25:113–117

    Article  CAS  PubMed  Google Scholar 

  • Cloete KJ, Valentine AJ, Stander MA, Blomerus LM, Botha A (2009) Evidence of symbiosis between the soil yeast Cryptococcus laurentii and a sclerophyllous medicinal shrub, Agathosma betulina (berg.) pillans. Microb Ecol 57:624–632

    Article  PubMed  Google Scholar 

  • Coluccio AE, Rodriguez RK, Kernan MJ, Neiman AM (2008) The yeast spore wall enables spores to survive passage through the digestive tract of Drosophila. PLoS One 3:e2873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crowley PH, Cox JJ (2011) Intraguild mutualism. Trends Ecol Evol 26:627–633

    Article  PubMed  Google Scholar 

  • Currie CR, Poulsen M, Mendenhall J, Boomsma JJ, Billen J (2006) Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 311:81–83

    Article  CAS  PubMed  Google Scholar 

  • Davis TS (2014) The ecology of yeasts in the bark beetle holobiont: a century of research revisited. Microb Ecol 69:723–732

    Article  PubMed  Google Scholar 

  • Davis TS, Hofstetter RW, Foster JT, Foote NE, Keim P (2011) Interactions between the yeast Ogataea pini and filamentous fungi associated with the western pine beetle. Microb Ecol 61:626–634

    Article  PubMed  Google Scholar 

  • Davis TS, Boundy-Mills K, Landolt PJ (2012) Volatile emissions from an epiphytic fungus are semiochemicals for eusocial wasps. Microb Ecol 64:1056–1063

    Article  CAS  PubMed  Google Scholar 

  • Deák T (2006) Environmental factors influencing yeasts. In: Rosa CA, Gabor P (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 155–174

    Chapter  Google Scholar 

  • Do Carmo-Sousa L (1969) Distribution of yeasts in nature. In: Rose AH, Harrison JS (eds) The yeasts, 1st edn. Academic Press, London, pp 79–105

    Google Scholar 

  • Domart-Coulon IJ, Sinclair CS, Hill RT, Tambutté S, Puverel S, Ostrander GK (2004) A basidiomycete isolated from the skeleton of Pocillopora damicornis (Scleractinia) selectively stimulates short-term survival of coral skeletogenic cells. Mar Biol 144:583–592

    Article  Google Scholar 

  • Douglas AE (2016) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34

    Article  CAS  Google Scholar 

  • Drinnenberg I, Fink GR, Bartel DP (2011) Compatibility with killer explains the rise of RNAi-deficient fungi. Science 333:1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyer AG, Whitney HM, Arnold SEJ, Glover BJ, Chittka L (2006) Behavioural ecology: bees associate warmth with floral colour. Nature 442:525

    Article  CAS  PubMed  Google Scholar 

  • Ebbert MA, Marlowe JL, Burkholder JJ (2003) Protozoan and intracellular fungal gut endosymbionts in Drosophila: prevalence and fitness effects of single and dual infections. J Invertebr Pathol 83:37–45

    Article  PubMed  Google Scholar 

  • Eisikowitch D, Lachance M-A, Kevan PG, Willis S, Collins-Thompson DL (1990) The effect of the natural assemblage of microorganisms and selected strains of the yeast Metschnikowia reukaufii in controlling the germination of pollen of the common milkweed Asclepias syriaca. Can J Bot 68:1163–1165

    Article  Google Scholar 

  • Elias S, Banin E (2012) Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev 36:990–1004

    Article  CAS  PubMed  Google Scholar 

  • El-Tarabily KA (2004) Suppression of Rhizoctonia solani diseases of sugar beet by antagonistic and plant growth-promoting yeasts. J Appl Microbiol 96:69–75

    Article  CAS  PubMed  Google Scholar 

  • Fanning S, Mitchell AP (2012) Fungal biofilms. PLoS Pathog 8:1–4

    Article  CAS  Google Scholar 

  • Farré-Armengol G, Filella I, Llusia J, Peñuelas J (2016) Bidirectional interaction between phyllospheric microbiotas and plant volatile emissions. Trends Plant Sci 21:854–860

    Article  PubMed  CAS  Google Scholar 

  • Fleet GH (2006) The commercial and community significance of yeasts in food and beverage production. In: Querol A, Fleet GH (eds) Yeasts in food and beverages. Springer, Berlin, pp 2–12

    Google Scholar 

  • Flórez LV, Biedermann PHW, Engl T, Kaltenpoth M (2015) Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep 32:904–936

    Article  PubMed  Google Scholar 

  • Fokkema NJ, Riphagen I, Poot RJ, de Jong C (1983) Aphid honeydew, a potential stimulant of Cochliobolus sativus and Septoria nodorum and the competitive role of saprophytic mycoflora. Trans Br Mycol Soc 81:355–363

    Article  Google Scholar 

  • Fonseca A, Inácio JJS (2006) Phylloplane yeasts. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 263–301

    Chapter  Google Scholar 

  • Fracchia S, Godeas A, Scervino JM, Sampedro I, Ocampo JA, García-Romera I (2003) Interaction between the soil yeast Rhodotorula mucilaginosa and the arbuscular mycorrhizal fungi Glomus mosseae and Gigaspora rosea. Soil Biol Biochem 35:701–707

    Article  CAS  Google Scholar 

  • Francesca N, Carvalho C, Sannino C, Guerreiro MA, Almeida PM, Settanni L, Massa B, Sampaio JP, Moschetti G (2014) Yeasts vectored by migratory birds collected in the Mediterranean island of Ustica and description of Phaffomyces usticensis f.a. sp. nov., a new species related to the cactus ecoclade. FEMS Yeast Res 14:910–921

    Article  CAS  PubMed  Google Scholar 

  • Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75:583–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galkiewicz JP, Stellick SH, Gray MA, Kellogg CA (2012) Cultured fungal associates from the deep-sea coral Lophelia pertusa. Deep Res Part I Oceanogr Res Pap 67:12–20

    Article  Google Scholar 

  • Ganter P (2006) Yeast and invertebrate associations. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 303–370

    Chapter  Google Scholar 

  • Gatesoupe FJ (2007) Live yeasts in the gut: natural occurrence, dietary introduction, and their effects on fish health and development. Aquaculture 267:20–30

    Article  Google Scholar 

  • Gilbert DG (1980) Dispersal of yeasts and bacteria by Drosophilia in a temperate forest. Oecologia 46:135–137

    Article  PubMed  Google Scholar 

  • Glushakova AM, Chernov IY (2010) Seasonal dynamics of the structure of epiphytic yeast communities. Microbiology 79:830–839

    Article  CAS  Google Scholar 

  • Goddard M, Godfray H, Burt A (2005) Sex increases the efficacy of natural selection in experimental yeast populations. Nature 434:636–640

    Article  CAS  PubMed  Google Scholar 

  • Golonka AM, Johnson BO, Freeman J, Hinson DW (2014) Impact of nectarivorous yeasts on Silene caroliniana’s scent. East Biol 3:1–26

    Article  Google Scholar 

  • Golubev WI (2006) Antagonistic interactions among yeasts. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 197–219

    Chapter  Google Scholar 

  • Good AP, Gauthier M-PL, Vannette RL, Fukami T (2014) Honey bees avoid nectar colonized by three bacterial species, but not by a yeast species, isolated from the bee gut. PLoS One 9:e86494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hagler AN, Ahearn DG (1987) Ecology of aquatic yeasts. In: Rose AH, Harrison JS (eds) The yeast, 2nd edn. Academic Press, London, pp 181–205

    Google Scholar 

  • Herrera CM, Medrano M (2016) Pollination consequences of mimicking intrafloral microbial warming in an early-blooming herb. Flora 232:142–149

    Article  Google Scholar 

  • Herrera CM, Pozo MI (2010) Nectar yeasts warm the flowers of a winter-blooming plant. Proc R Soc B-Biol Sci 277:1827–1834

    Article  Google Scholar 

  • Herrera CM, Pozo MI, Bazaga P (2011) Clonality, genetic diversity and support for the diversifying selection hypothesis in natural populations of a flower-living yeast. Mol Ecol 20:4395–4407

    Article  CAS  PubMed  Google Scholar 

  • Herrera CM, Pozo MI, Medrano M (2013) Yeasts in nectar of an early-blooming herb: sought by bumble bees, detrimental to plant fecundity. Ecology 94:273–279

    Article  PubMed  Google Scholar 

  • Hoang D, Kopp A, Chandler JA (2015) Interactions between Drosophila and its natural yeast symbionts-Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship? PeerJ 3:e1116

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoek TA, Axelrod K, Biancalani T, Yurtsev EA, Liu J, Gore J (2016) Resource availability modulates the cooperative and competitive nature of a microbial cross-feeding mutualism. PLoS Biol 14:e1002540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, Lewis JD, Bushman FD (2013) Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One 8:e66019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofstetter RW, Cronin JT, Klepzig KD, Moser JC, Ayres MP (2006) Antagonisms, mutualisms and commensalisms affect outbreak dynamics of the southern pine beetle. Oecologia 147:679–691

    Article  PubMed  Google Scholar 

  • Hom EFY, Murray AW (2014) Plant-fungal ecology. Niche engineering demonstrates a latent capacity for fungal-algal mutualism. Science 345:94–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huffnagle GB, Noverr MC (2013) The emerging world of the fungal microbiome. Trends Microbiol 21:334–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt DWA, Borden JH (1990) Conversion of verbenols to verbenone by yeasts isolated from Dendroctonus ponderosae (Coleoptera: Scolytidae). J Chem Ecol 16:1385–1397

    Article  CAS  PubMed  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–586

    Article  Google Scholar 

  • Kircher H (1982) Chemical composition of cacti and its relationship to Sonoran Desert Drosophila. In: Barker JSF, Starmer WT (eds) Ecological genetics and evolution: the cactus–Drosophila model system. Academic Press, Sydney, pp 143–158

    Google Scholar 

  • Knop M (2006) Evolution of the hemiascomycete yeasts: on life styles and the importance of inbreeding. BioEssays 28:696–708

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman CP, Fell JW (2006) Yeast systematics and phylogeny – implications of molecular identification methods for studies in ecology. In: Péter G, Rosa C (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 11–30

    Chapter  Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T (eds) (2011) The yeasts, a taxonomic study, vol 3, 5th edn. Amsterdam, Elsevier

    Google Scholar 

  • Lachance M-A (2016) Metschnikowia: half tetrads, a regicide, and the fountain of youth. Yeast 33:563–574

    Article  CAS  Google Scholar 

  • Lachance M-A, Nair P, Lo P (1994) Mating in the heterothallic haploid yeast Clavispora opuntiae, with special reference to mating type imbalances in local populations. Yeast 10:895–906

    Article  CAS  PubMed  Google Scholar 

  • Lachance M-A, Bowles JM, Starmer WT (2003) Geography and niche occupancy as determinants of yeast biodiversity: the yeast-insect-morning glory ecosystem of Kīpuka Puaulu, Hawai’i. FEMS Yeast Res 4:105–111

    Article  CAS  PubMed  Google Scholar 

  • Lam SSTH, Howell KS (2015) Drosophila-associated yeast species in vineyard ecosystems. FEMS Microbiol Lett 362:fnv170

    Google Scholar 

  • Lange L, Grell MN (2014) The prominent role of fungi and fungal enzymes in the ant-fungus biomass conversion symbiosis. Appl Microbiol Biotechnol 98:4839–4851

    Article  CAS  PubMed  Google Scholar 

  • Last FT, Price D (1969) Yeasts associated with living plants and their environs. In: Rose A, Harrison J (eds) The yeasts, vol 1. Academic Press, London, pp 183–218

    Google Scholar 

  • Limtong S, Koowadjanakul N (2012) Yeasts from phylloplane and their capability to produce indole-3-acetic acid. World J Microbiol Biotechnol 28:3323–3335

    Article  CAS  PubMed  Google Scholar 

  • Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schaberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459

    Article  CAS  PubMed  Google Scholar 

  • Lipke H, Fraenkel G (1956) Insect nutrition. Annu Rev Entomol 1:17–44

    Article  Google Scholar 

  • Little AEF, Currie CR (2008) Black yeast symbionts compromise the efficiency of antibiotic defenses in fungus-growing ants. Ecology 89:1216–1222

    Article  PubMed  Google Scholar 

  • Lund A (1954) Studies on the ecology of yeasts. Munksgaard, Copenhagen

    Google Scholar 

  • Lund A (1974) Yeasts and moulds in the bovine rumen. J Gen Microbiol 81:453–462

    Article  CAS  PubMed  Google Scholar 

  • MacWilliam IC (1959) A survey of the antibiotic powers of yeasts. J Gen Microbiol 21:410–414

    Article  CAS  PubMed  Google Scholar 

  • Martin D, Bedel de Buzareinques F, Barry P, Derridj S (1993) An epiphytic yeast (Sporobolomyces roseus) influencing in oviposition preference of the European corn borer (Ostrinia nubilalis) on maize. Acta Oecol 14:563–574

    Google Scholar 

  • McCormick SP (2013) Microbial detoxification of mycotoxins. J Chem Ecol 39:907–918

    Article  CAS  PubMed  Google Scholar 

  • Mittelbach M, Yurkov AM, Stoll R, Begerow D (2016) Inoculation order of nectar-borne yeasts opens a door for transient species and changes nectar rewarded to pollinators. Fungal Ecol 22:90–97

    Article  Google Scholar 

  • Moller L, Lerm B, Botha A (2016) Interactions of arboreal yeast endophytes: an unexplored discipline. Fungal Ecol 22:73–82

    Article  Google Scholar 

  • Molnar O, Schatzmayr G, Fuchs E, Prillinger H (2004) Trichosporon mycotoxinivorans sp. nov., a new yeast species useful in biological detoxification of various mycotoxins. Syst Appl Microbiol 27:661–671

    Article  CAS  PubMed  Google Scholar 

  • Moran N (2007) Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci U S A 104:8627–8633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller UG, Rehner SA, Schultz TR (1998) The evolution of agriculture in ants. Science 281:2034–2038

    Article  CAS  PubMed  Google Scholar 

  • Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR (2005) The evolution of agriculture in insects. Annu Rev Ecol Evol Syst 36:563–595

    Article  Google Scholar 

  • Nagahama T (2006) Yeast biodiversity in freshwater, marine and deep-sea environments. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 241–262

    Chapter  Google Scholar 

  • Nassar AH, El-Tarabily KA, Sivasithamparam K (2005) Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biol Fertil Soils 42:97–108

    Article  CAS  Google Scholar 

  • Peay KG, Belisle M, Fukami T (2012) Phylogenetic relatedness predicts priority effects in nectar yeast communities. Proc R Soc B Biol Sci 279:749–758

    Article  Google Scholar 

  • Peters BM, Jabra-Rizk MA, Scheper MA, Leid JG, Costerton JW, Shirtliff ME (2010) Microbial interactions and differential protein expression in Staphylococcus aureus-Candida albicans dual-species biofilms. FEMS Immunol Med Microbiol 59:493–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phaff HJ, Starmer WT (1987) Yeasts associated with plants, insects and soil. In: Rose AH, Harrison J (eds) The yeasts, 2nd edn, vol I. Academic Press, London, pp 123–180

    Google Scholar 

  • Phaff HJ, Miller MW, Mrak EM (1978) The life of yeasts, 2nd edn. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Phaff HJ, Miranda M, Starmer WT, Tredick J, Barker JSF (1986) Clavispora opuntiae, a new heterothallic yeast occurring in necrotic tissue of Opuntia species. Int J Syst Bacteriol 36:372–379

    Article  Google Scholar 

  • Poonlaphdecha S, Ribas A (2016) Yeasts in amphibians are common: isolation and the first molecular characterization from Thailand. Acta Herpetol 11:81–84

    Google Scholar 

  • Prajapati VS, Purohit HJ, Raje DV, Parmar N, Patel AB, Jones OAH, Joshi CG (2016) The effect of a high-roughage diet on the metabolism of aromatic compounds by rumen microbes: a metagenomic study using Mehsani buffalo (Bubalus bubalis). Appl Microbiol Biotechnol 100:1319–1331

    Article  CAS  PubMed  Google Scholar 

  • Raggi P, Lopez P, Diaz A, Carrasco D, Silva A, Velez A, Opazo R, Magne F, Navarrete PA (2014) Debaryomyces hansenii and Rhodotorula mucilaginosa comprised the yeast core gut microbiota of wild and reared carnivorous salmonids, croaker and yellowtail. Environ Microbiol 16:2791–2803

    Article  CAS  PubMed  Google Scholar 

  • Ren D, Madsen JS, Sørensen SJ, Burmølle M (2015) High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation. ISMEJ 9:81–89

    Article  CAS  Google Scholar 

  • Reuter M, Bell G, Greig D (2007) Increased outbreeding in yeast in response to dispersal by an insect vector. Curr Biol 17:81–83

    Article  CAS  Google Scholar 

  • Reynolds TB, Fink GR (2001) Bakers’ yeast, a model for fungal biofilm formation. Science (New York, NY) 291:878–881

    Article  CAS  Google Scholar 

  • Rodrigues A, Cable RN, Mueller UG, Bacci M, Pagnocca FC (2009) Antagonistic interactions between garden yeasts and microfungal garden pathogens of leaf-cutting ants. A van Leeuwenhoek, Int J Gen Mol Microbiol 96:331–342

    Article  Google Scholar 

  • Rohlfs M, Kürschner L (2010) Saprophagous insect larvae, Drosophila melanogaster, profit from increased species richness in beneficial microbes. J Appl Entomol 134:667–671

    Google Scholar 

  • Sang JH (1978) Nutritional requirements of Drosophila. In: Ashburner M (ed) Genetics and biology of Drosophila. Academic Press, London, pp 159–192

    Google Scholar 

  • Schaeffer RN, Irwin RE (2014) Yeasts in nectar enhance male fitness in a montane perennial herb. Ecology 95:1792–1798

    Article  PubMed  Google Scholar 

  • Schaeffer RN, Mei YZ, Andicoechea J, Manson JS, Irwin RE (2016) Consequences of a nectar yeast for pollinator preference and performance. Funct Ecol 31:613–621

    Article  Google Scholar 

  • Schäfer A, Konrad R, Kuhnigk T, Kämpfer P, Hertel H, König H (1996) Hemicellulose-degrading bacteria and yeasts from the termite gut. J Appl Bacteriol 80:471–478

    Article  PubMed  Google Scholar 

  • Schatzmayr G, Heidler D, Fuchs E, Nitsch S, Mohnl M, Täiubel M, Loibner AP, Braun R, Binder EM (2003) Investigation of different yeast strains for the detoxification of ochratoxin a. Mycotoxin Res 19:124–128

    Article  CAS  PubMed  Google Scholar 

  • Schmitt MJ, Breinig F (2006) Yeast viral killer toxins: lethality and self-protection. Nat Rev Microbiol 4:212–221

    Article  CAS  PubMed  Google Scholar 

  • Singh CS, Kapoor A, Wange SS (1991) The enhancement of root colonisation of legumes by vesicular-arbuscular mycorrhizal (VAM) fungi through the inoculation of the legume seed with commercial yeast (Saccharomyces cerevisiae). Plant Soil 131:129–133

    Article  Google Scholar 

  • Sipiczki M (2006) Metschnikowia strains isolated from botrytized grapes antagonize fungal and bacterial growth by iron depletion. Appl Environ Microbiol 72:6716–6724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:1–13

    Article  CAS  Google Scholar 

  • Stamps JA, Yang LH, Morales VM, Boundy-Mills KL (2012) Drosophila regulate yeast density and increase yeast community similarity in a natural substrate. PLoS One 7:e42238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanton ML (2003) Interacting guilds: moving beyond the pairwise perspective on mutualisms. Am Nat 162:S10–S23

    Article  PubMed  Google Scholar 

  • Starmer WT, Aberdeen V (1990) The nutritional importance of pure and mixed cultures of yeasts in the development of Drosophila mulleri larvae in Opuntia tissues and its relationship to host plant shifts. In: Monographs in evolutionary biology: ecological and evolutionary genetics of Drosophila. Springer, Berlin, pp 485–489

    Google Scholar 

  • Starmer WT, Fogleman JC (1986) Coadaptation of Drosophila and yeasts in their natural habitat. J Chem Ecol 12:1037–1055

    Article  CAS  PubMed  Google Scholar 

  • Starmer WT, Lachance M-A (2011) Yeast ecology. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 65–83

    Chapter  Google Scholar 

  • Starmer WT, Peris F, Fontdevila A (1988) The transmission of yeasts by Drosophila buzzatii during courtship and mating. Anim Behav 36:1691–1695

    Article  Google Scholar 

  • Stefanini I, Dapporto L, Legras J-L, Calabretta A, Di Paola M, De Filippo C, Viola R, Capretti P, Polsinelli M, Turillazzi S, Cavalieri D (2012) Role of social wasps in Saccharomyces cerevisiae ecology and evolution. Proc Natl Acad Sci 109:13398–13403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanini I, Dapporto L, Berná L, Polsinelli M, Turillazzi S, Cavalieri D (2016) Social wasps are a Saccharomyces mating nest. Proc Natl Acad Sci 113:2–6

    Article  CAS  Google Scholar 

  • Stensmyr MC, Dweck HKM, Farhan A, Ibba I, Strutz A, Mukunda L, Linz J, Grabe V, Steck K, Lavista-Llanos S, Wicher D, Sachse S, Knaden M, Becher PG, Seki Y, Hansson BS (2012) A conserved dedicated olfactory circuit for detecting harmful microbes in drosophila. Cell 151:1345–1357

    Article  CAS  PubMed  Google Scholar 

  • Stökl J, Strutz A, Dafni A, Svatos A, Doubsky J, Knaden M, Sachse S, Hansson BS, Stensmyr MC (2010) A deceptive pollination system targeting drosophilids through olfactory mimicry of yeast. Curr Biol 20:1846–1852

    Article  CAS  PubMed  Google Scholar 

  • Streletskii RA, Kachalkin AV, Glushakova AM, Demin VV, Chernov IY (2016) Quantitative determination of indole-3-acetic acid in yeasts using high performance liquid chromatography—tandem mass spectrometry. Microbiology 85:727–773

    Article  CAS  Google Scholar 

  • Tedersoo L, Lindahl B (2016) Fungal identification biases in microbiome projects. Environ Microbiol Rep 8:1–20

    Article  Google Scholar 

  • Tedersoo L, Anslan S, Bahram M, Põlme S, Riit T, Liiv I, Kõljalg U, Kisand V, Nilsson H, Hildebrand F, Bork P, Abarenkov K (2015) Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10:1–43

    Article  Google Scholar 

  • Torto B, Boucias DG, Arbogast RT, Tumlinson JH, Teal PE (2007) Multitrophic interaction facilitates parasite-host relationship between an invasive beetle and the honey bee. Proc Natl Acad Sci U S A 104:8374–8378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker CM, Fukami T (2014) Environmental variability counteracts priority effects to facilitate species coexistence: evidence from nectar microbes. Proc Biol Sci 281:20132637

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaca I, Faúndez C, Maza F, Paillavil B, Hernández V, Acosta F, Levicán G, Martínez C, Chávez R (2013) Cultivable psychrotolerant yeasts associated with Antarctic marine sponges. World J Microbiol Biotechnol 29:183–189

    Article  CAS  PubMed  Google Scholar 

  • Vannette RL, Fukami T (2013) Historical contingency in species interactions: towards niche-based predictions. Ecol Lett 17:115–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Vannette RL, Fukami T (2016) Nectar microbes can reduce secondary metabolites in nectar and alter effects on nectar consumption by pollinators. Ecology 97:1410–1419

    Article  PubMed  Google Scholar 

  • Vannette RL, Gauthier M-PL, Fukami T (2013) Nectar bacteria, but not yeast, weaken a plant-pollinator mutualism. Proc Biol Sci 280:20122601

    Article  PubMed  PubMed Central  Google Scholar 

  • Vega F, Dowd PF (2004) The role of yeasts as insect endosymbionts. In: Vega FE, Blackwell M (eds) Insect-fungal associations: ecology and evolution. Oxford University Press, London, pp 211–244

    Google Scholar 

  • Vishniac HS, Anderson JA, Filonow AB (1997) Assimilation of volatiles from ripe apples by Sporidiobolus salmonicolor and Tilletiopsis washingtonensis. A van Leeuwenhoek 72:201–207

    Article  CAS  Google Scholar 

  • Vo TL, Mueller UG, Mikheyev AS (2009) Free-living fungal symbionts (Lepiotaceae) of fungus-growing ants (Attini: Formicidae). Mycologia 101:206–210

    Article  CAS  PubMed  Google Scholar 

  • Weber NA (1972) Gardening ants, the attines. American Philosophical Society, Philadelphia, PA

    Google Scholar 

  • Webster NS, Taylor MW (2012) Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol 14:335–346

    Article  CAS  PubMed  Google Scholar 

  • Weiser J, Wegensteiner R, Händel U, Zizka Z (2003) Infections with the ascomycete fungus Metschnikowia typographi sp. nov. in the bark beetles Ips typographus and Ips amitinus (Coleoptera, Scolytidae). Folia Microbiol (Praha) 48:611–618

    Article  CAS  Google Scholar 

  • Wiens F, Zitzmann A, Lachance MA, Yegles M, Pragst F, Wurst FM, von Holst D, Guan SL, Spanagel R (2008) Chronic intake of fermented floral nectar by wild treeshrews. Proc Natl Acad Sci U S A 105:10426–10431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witzgall P, Proffit M, Rozpędowska E, Becher PG, Andreadis S, Coracini M, Lindblom TUT, Ream LJ, Hagman A, Bengtsson M, Kurtzman CP, Piškur J, Knight A (2012) “This is not an apple”-yeast mutualism in codling moth. J Chem Ecol 38:949–957

    Article  PubMed  Google Scholar 

  • Zeyl C, Bell G (1997) The advantage of sex in evolving yeast populations. Nature 388:465–468

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to the authors of relevant work that we were unable to cite in the limited space here. We are grateful to those who provided helpful feedback, particularly Ash Zemenick and the rest of the Vannette lab. RLV would like to acknowledge support from the UC Davis Department of Entomology and Nematology and Hatch project 1010540.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Mittelbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mittelbach, M., Vannette, R.L. (2017). Mutualism in Yeasts. In: Buzzini, P., Lachance, MA., Yurkov, A. (eds) Yeasts in Natural Ecosystems: Ecology . Springer, Cham. https://doi.org/10.1007/978-3-319-61575-2_6

Download citation

Publish with us

Policies and ethics