Skip to main content

Temporal and Geographic Patterns in Yeast Distribution

  • Chapter
  • First Online:
Yeasts in Natural Ecosystems: Ecology

Abstract

The famous hypothesis formulated by Beijerinck and Baas Becking, ‘Everything is everywhere, [but] the environment selects’, has dominated microbiological research and directed it towards the search of ecological factors as the main determinants of microbial community composition. The apparent lack of geographic distribution patterns in microorganisms (ubiquity) is traditionally explained by their adaptive (physiological) flexibility and ease of dispersal. Strong disproof of yeast ubiquity comes from studies on yeasts associated with beetles, drosophilids, bees, and short-lived flowers. The current knowledge suggests that geographical barriers, insect vectors, and host plants are important factors determining distribution of yeasts in their natural habitats. This chapter provides examples of the larger-scale distribution of yeasts in the environment, including endemism, latitudinal gradients, distance-decay relationships, and Holarctic and bipolar distributions. The influence of geographic factors on reproductive isolation in yeast populations is additionally addressed in this chapter. Temporal changes such as ecological successions and seasonal dynamics of yeast communities are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleksandrova VD (2012) Russian approaches to classification of vegetation. In: Whittaker RH (ed) Classification of plant communities. Springer, Berlin, pp 167–200

    Google Scholar 

  • Babjeva IP, Chernov IY (1995) Geographic aspects of yeast ecology. Physiol Gen Biol Rev 9:1–54

    Google Scholar 

  • Babjeva IP, Golovleva LA (1963) Yeast flora of the main soil types of the European part of the USSR. In: Microorganisms in agriculture. Moscow State University Press, Moscow, pp 231–251 (in Russian)

    Google Scholar 

  • Babjeva IP, Golubev WI, Kartintsev AV, Gorin SE, Zaslavskaya PL (1973) Yeasts in the structure of forest and meadow biogeocenoses. Vestn Mosk Univ Ser Pochvoved 6:67–73 (in Russian)

    Google Scholar 

  • Babjeva IP, Golubev WI, Reshetоva IS, Azieva EE, Blagodatskaja VM (1976) Yeasts in high altitude regions of Northern and Southern Hemispheres. Vestn Mosk Univ Ser Pochvoved 6:76–82 (in Russian)

    Google Scholar 

  • Barnett JA (2004) A history of research on yeasts 8: taxonomy. Yeast 21:1141–1193

    Article  CAS  PubMed  Google Scholar 

  • Begerow D, Schafer AM, Kellner R, Yurkov A, Kemler M, Oberwinkler F, Bauer R (2014) Ustilaginomycotina. In: McLaughlin D, Spatafora JW (eds) The mycota, systematics and evolution, vol 7A. Springer, Berlin, pp 295–330

    Chapter  Google Scholar 

  • Belisle M, Mendenhall CD, Brenes FO, Fukami T (2014) Temporal variation in fungal communities associated with tropical hummingbirds and nectarivorous bats. Fungal Ecol 12:44–51

    Article  Google Scholar 

  • Blackwell M (2011) The fungi: 1, 2, 3… 5.1 million species? Am J Bot 98:426–438

    Article  PubMed  Google Scholar 

  • Boekhout T (2005) Biodiversity: gut feeling for yeasts. Nature 434:449–451

    Article  CAS  PubMed  Google Scholar 

  • Botha A (2006) Yeasts in soil. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 221–240

    Chapter  Google Scholar 

  • Botha A (2011) The importance and ecology of yeasts in soil. Soil Biol Biochem 43:1–8

    Article  CAS  Google Scholar 

  • Branda E, Turchetti B, Diolaiuti G, Pecci M, Smiraglia C, Buzzini P (2010) Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone Glacier, Apennines, Italy). FEMS Microbiol Ecol 72:354–369

    Article  CAS  PubMed  Google Scholar 

  • Brysch-Herzberg M (2004) Ecology of yeasts in plant–bumblebee mutualism in Central Europe. FEMS Microbiol Ecol 50:87–100

    Article  CAS  PubMed  Google Scholar 

  • Butinar L, Strmole T, Gunde-Cimerman N (2011) Relative incidence of ascomycetous yeasts in arctic coastal environments. Microb Ecol 61:832–843

    Article  PubMed  Google Scholar 

  • Buzzini P, Margesin R (2014) Cold-adapted yeasts. Springer, Berlin

    Book  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241

    Article  CAS  PubMed  Google Scholar 

  • Čadež N, Poot GA, Raspor P, Smith MT (2003) Hanseniaspora meyeri sp. nov., Hanseniaspora clermontiae sp. nov., Hanseniaspora lachancei sp. nov. and Hanseniaspora opuntiae sp. nov., novel apiculate yeast species. Int J Syst Evol Microbiol 53:1671–1680

    Article  PubMed  CAS  Google Scholar 

  • Chernov IY (1985) Synecological analysis of yeast groupings in the Taimyr tundra. Ekologiia 1:54–60 (in Russian)

    Google Scholar 

  • Chernov IY (2005) The latitude-zonal and spatial-successional trends in the distribution of yeasts. Zh Obshch Biol 66:123–135 (in Russian)

    Google Scholar 

  • Chernov IY (2013) Yeasts in nature. KMK Press, Moscow (in Russian)

    Google Scholar 

  • Coelho MA, Sampaio JP, Gonçalves P (2010) A deviation from the bipolar-tetrapolar mating paradigm in an early diverged basidiomycete. PLoS Genet 6:e1001052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Connell L, Redman R, Craig S, Scorzetti G, Iszard M, Rodriguez R (2008) Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microb Ecol 56:448–459

    Article  CAS  PubMed  Google Scholar 

  • Danielson RM, Jurgensen MF (1973) The propagule density of Lipomyces and other yeasts in forest soils. Mycopathol Mycol Appl 51:191–198

    Article  CAS  PubMed  Google Scholar 

  • De García V, Brizzio S, Libkind D, Buzzini P, Van Broock M (2007) Biodiversity of cold-adapted yeasts from glacial meltwater rivers in Patagonia, Argentina. FEMS Microbiol Ecol 59:331–341

    Article  PubMed  CAS  Google Scholar 

  • de Garcia V, Coelho MA, Maia TM, Rosa LH, Vaz AM, Rosa CA, Sampaio JP, Gonçalves P, van Broock M, Libkind D (2015) Sex in the cold: taxonomic reorganization of psychrotolerant yeasts in the order Leucosporidiales. FEMS Yeast Res 15:fov019

    Google Scholar 

  • De Wit R, Bouvier T (2006) ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say? Environ Microbiol 8:755–758

    Google Scholar 

  • Duarte AW, Passarini MR, Delforno TP, Pellizzari FM, Cipro CV, Montone RC, Petry MV, Putzke J, Rosa LH, Sette LD (2016) Yeasts from macroalgae and lichens that inhabit the South Shetland Islands, Antarctica. Environ Microbiol Rep 8:874–885

    Article  Google Scholar 

  • Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371

    Article  CAS  PubMed  Google Scholar 

  • Fenchel TOM, Finlay BJ (2004) The ubiquity of small species: patterns of local and global diversity. Bioscience 54:777–784

    Article  Google Scholar 

  • Fernández-Espinar TM, Barrio E, Querol A (2003) Analysis of the genetic variability in the species of the Saccharomyces sensu stricto complex. Yeast 20:1213–1226

    Article  CAS  Google Scholar 

  • Fonseca Á, Inácio J (2006) Phylloplane yeasts. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 263–301

    Chapter  Google Scholar 

  • Fonseca Á, Scorzetti G, Fell JW (2000) Diversity in the yeast Cryptococcus albidus and related species as revealed by ribosomal DNA sequence analysis. Can J Microbiol 46:7–27

    Article  CAS  PubMed  Google Scholar 

  • Fonseca A, Boekhout T, Fell JW (2011) Cryptococcus Vuillemin (1901). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, New York, pp 1661–1737

    Chapter  Google Scholar 

  • França L, Sannino C, Turchetti B, Buzzini P, Margesin R (2016) Seasonal and altitudinal changes of culturable bacterial and yeast diversity in Alpine forest soils. Extremophiles 20:855–873

    Article  PubMed  PubMed Central  Google Scholar 

  • Francesca N, Carvalho C, Sannino C, Guerreiro MA, Almeida PM, Settanni L, Massa B, Sampaio JP, Moschetti G (2014) Yeasts vectored by migratory birds collected in the Mediterranean island of Ustica and description of Phaffomyces usticensis f.a. sp. nov., a new species related to the cactus ecoclade. FEMS Yeast Res 14:910–921

    Article  CAS  PubMed  Google Scholar 

  • Fukami T (2015) Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst 46:1–23

    Article  Google Scholar 

  • Gadanho M, Almeida JM, Sampaio JP (2003) Assessment of yeast diversity in a marine environment in the south of Portugal by microsatellite-primed PCR. Antonie van Leeuwenhoek 84:217–227

    Article  CAS  PubMed  Google Scholar 

  • Ganter PF (2011) Everything is not everywhere: the distribution of cactophilic yeast. In: Fontaneto D (ed) Biogeography of microscopic organisms: is everything small everywhere? Cambridge University Press, pp 130–176

    Google Scholar 

  • Ganter PF, Cardinali G, Giammaria M, Quarles B (2004) Correlations among measures of phenotypic and genetic variation within an oligotrophic asexual yeast, Candida sonorensis, collected from Opuntia. FEMS Yeast Res 4:527–540

    Article  CAS  PubMed  Google Scholar 

  • Glushakova AM, Chernov IY (2004) Seasonal dynamics in a yeast population on leaves of the common wood sorrel Oxalis acetosella L. Microbiology 73:184–188

    Article  CAS  Google Scholar 

  • Glushakova AM, Chernov IY (2007) Seasonal dynamic of the numbers of epiphytic yeasts. Microbiology 76:590–595

    Article  CAS  Google Scholar 

  • Glushakova AM, Chernov IY (2010) Seasonal dynamics of the structure of epiphytic yeast communities. Microbiology 79:830–839

    Article  CAS  Google Scholar 

  • Glushakova AM, Yurkov AM, Chernov IY (2007) Massive isolation of anamorphous ascomycete yeasts Candida oleophila from plant phyllosphere. Microbiology 76:799–803

    Article  CAS  Google Scholar 

  • Glushakova AM, Kachalkin AV, Chernov IY (2013) Molecular-genetic analysis of yeast diversity in the Taymir tundra. Interact J Ecol Soil Sci 19:128–141

    Google Scholar 

  • Golubev WI, Babjeva IP, Novik SN (1977) Yeast succession in sap flows of birch. Ekologiia 5:21–26

    Google Scholar 

  • Golubev WI, Sampaio JP, Alves L, Golubeva EW (2006) Cryptococcus silvicola nov. sp. from nature reserves of Russia and Portugal. Antonie van Leeuwenhoek 89:45–51

    Article  CAS  PubMed  Google Scholar 

  • Golubtsova YV, Glushakova AM, Chernov IY (2007) The seasonal dynamics of yeast communities in the rhizosphere of soddy-podzolic soils. Eurasian Soil Sci 40:875–879

    Article  Google Scholar 

  • Gomes FC, Safar SV, Marques AR, Medeiros AO, Santos AR, Carvalho C, Lachance MA, Sampaio JP, Rosa CA (2015) The diversity and extracellular enzymatic activities of yeasts isolated from water tanks of Vriesea minarum, an endangered bromeliad species in Brazil, and the description of Occultifur brasiliensis f.a., sp. nov. Antonie van Leeuwenhoek 107:597–611

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez AE, Martinez AT, Almendros G, Grinbergs J (1989) A study of yeasts during the delignification and fungal transformation of wood into cattle feed in Chilean rain forest. Antonie van Leeuwenhoek 55:221–236

    Article  CAS  PubMed  Google Scholar 

  • Guerreiro MA, Springer DJ, Rodrigues JA, Rusche LN, Findley K, Heitman J, Fonseca Á (2013) Molecular and genetic evidence for a tetrapolar mating system in the basidiomycetous yeast Kwoniella mangrovensis and two novel sibling species. Eukaryot Cell 12:746–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilliermond A (1920) The yeasts. Wiley, New York

    Google Scholar 

  • Guillot G, Rousset F (2013) Dismantling the Mantel tests. Methods Ecol Evol 4:336–344

    Article  Google Scholar 

  • Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JB (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10:497–506

    CAS  PubMed  Google Scholar 

  • Herrera CM, Canto A, Pozo MI, Bazaga P (2010) Inhospitable sweetness: nectar filtering of pollinator-borne inocula leads to impoverished, phylogenetically clustered yeast communities. Proc R Soc B Biol Sci 277:747–754

    Article  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Inácio J, Pereira P, Carvalho DM, Fonseca A, Amaral-Collaco MT, Spencer-Martins I (2002) Estimation and diversity of phylloplane mycobiota on selected plants in a Mediterranean-type ecosystem in Portugal. Microb Ecol 44:344–353

    Article  PubMed  Google Scholar 

  • Inácio J, Ludwig W, Spencer-Martins I, Fonseca Á (2010) Assessment of phylloplane yeasts on selected Mediterranean plants by FISH with group-and species-specific oligonucleotide probes. FEMS Microbiol Ecol 71:61–72

    Article  PubMed  CAS  Google Scholar 

  • Jensen V (1963) Studies on the microflora of Danish beech forest soils. IV. Yeasts and yeast-like fungi. Zentralbl Bakteriol Mikrobiol Hyg A 117:41–65

    Google Scholar 

  • Kachalkin AV (2014) Yeasts of the White Sea intertidal zone and description of Glaciozyma litorale sp. nov. Antonie van Leeuwenhoek 105:1073–1083

    Article  CAS  PubMed  Google Scholar 

  • Kachalkin AV, Yurkov AM (2012) Yeast communities in Sphagnum phyllosphere along the temperature-moisture ecocline in the boreal forest-swamp ecosystem and description of Candida sphagnicola sp. nov. Antonie van Leeuwenhoek 102:29–43

    Article  PubMed  Google Scholar 

  • Kachalkin AV, Glushakova AM, Yurkov AM, Chernov IY (2008) Characterization of yeast groupings in the phyllosphere of Sphagnum mosses. Microbiology 77:474–481

    Article  CAS  Google Scholar 

  • Kokurewicz T, Ogórek R, Pusz W, Matkowski K (2016) Bats increase the number of cultivable airborne fungi in the “Nietoperek” bat reserve in Western Poland. Microb Ecol 72:36–48

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurtzman CP, Fell JW (2006) Yeast systematics and phylogeny - implications of molecular identification methods for studies in ecology. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 11–30

    Chapter  Google Scholar 

  • Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73:331–371

    Article  CAS  PubMed  Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

    Article  CAS  Google Scholar 

  • Lachance MA, Starmer WT (1982) Evolutionary significance of physiological relationships among yeast communities associated with trees. Can J Bot 60:285–293

    Article  Google Scholar 

  • Lachance MA, Starmer WT (1986) The community concept and the problem of non-trivial characterization of yeast communities. Coenoses 1:21–28

    Google Scholar 

  • Lachance MA, Starmer WT (1998) Ecology and yeasts. In: Kurtzman CP, Fell JW (eds) The yeasts. A taxonomic study, 4th edn. Elsevier, Amsterdam, pp 21–30

    Google Scholar 

  • Lachance MA, Metcalf BJ, Starmer WT (1982) Yeasts from exudates of Quercus, Ulmus, Populus, and Pseudotsuga: new isolations and elucidation of some factors affecting ecological specificity. Microb Ecol 8:191–198

    Article  CAS  PubMed  Google Scholar 

  • Lachance MA, Starmer WT, Bowles JM (1989) The yeast community of morning glory and associated drosophilids in a Hawaiian kipuka. Yeast 5:S501–S504

    Google Scholar 

  • Lachance MA, Gilbert DG, Starmer WT (1995) Yeast communities associated with Drosophila species and related flies in an eastern oak-pine forest: a comparison with western communities. J Ind Microbiol Biotechnol 14:484–494

    CAS  Google Scholar 

  • Lachance MA, Starmer WT, Rosa CA, Bowles JM, Barker JSF, Janzen DH (2001) Biogeography of the yeasts of ephemeral flowers and their insects. FEMS Yeast Res 1:1–8

    Article  CAS  PubMed  Google Scholar 

  • Lachance MA, Bowles JM, Starmer WT (2003a) Geography and niche occupancy as determinants of yeast biodiversity: the yeast–insect–morning glory ecosystem of Kīpuka Puaulu, Hawai’i. FEMS Yeast Res 4:105–111

    Article  CAS  PubMed  Google Scholar 

  • Lachance MA, Daniel HM, Meyer W, Prasad GS, Gautam SP, Boundy-Mills K (2003b) The D1/D2 domain of the large-subunit rDNA of the yeast species Clavispora lusitaniae is unusually polymorphic. FEMS Yeast Res 4:253–258

    Article  CAS  PubMed  Google Scholar 

  • Lachance MA, Ewing CP, Bowles JM, Starmer WT (2005) Metschnikowia hamakuensis sp. nov., Metschnikowia kamakouana sp. nov. and Metschnikowia mauinuiana sp. nov., three endemic yeasts from Hawaiian nitidulid beetles. Int J Syst Evol Microbiol 55:1369–1377

    Article  CAS  PubMed  Google Scholar 

  • Lachance MA, Dobson J, Wijayanayaka DN, Smith AM (2010) The use of parsimony network analysis for the formal delineation of phylogenetic species of yeasts: Candida apicola, Candida azyma, and Candida parazyma sp. nov., cosmopolitan yeasts associated with floricolous insects. Antonie van Leeuwenhoek 97:155–170

    Article  CAS  PubMed  Google Scholar 

  • Lachance MA, Wijayanayaka TM, Bundus JD, Wijayanayaka DN (2011) Ribosomal DNA sequence polymorphism and the delineation of two ascosporic yeast species: Metschnikowia agaves and Starmerella bombicola. FEMS Yeast Res 11:324–333

    Article  CAS  PubMed  Google Scholar 

  • Lachance MA, Hurtado E, Hsiang T (2016a) A stable phylogeny of the large-spored Metschnikowia clade. Yeast 33:261–275

    Article  CAS  PubMed  Google Scholar 

  • Lachance MA, Collens JD, Peng XF, Wardlaw AM, Bishop L, Hou LY, Starmer WT (2016b) Spatial scale, genetic structure, and speciation of Hawaiian endemic yeasts. Pac Sci 70:389–408

    Article  Google Scholar 

  • Legendre P, Fortin MJ (2010) Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol Ecol Resour 10:831–844

    Article  PubMed  Google Scholar 

  • Legendre P, Fortin MJ, Borcard D (2015) Should the Mantel test be used in spatial analysis? Methods Ecol Evol 6:1239–1247

    Article  Google Scholar 

  • Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol 9:119–130

    Article  CAS  PubMed  Google Scholar 

  • Libkind D, Ruffini A, van Broock M, Alves L, Sampaio JP (2007) Biogeography, host specificity, and molecular phylogeny of the basidiomycetous yeast Phaffia rhodozyma and its sexual form, Xanthophyllomyces dendrorhous. Appl Environ Microbiol 73(4):1120–1125

    Google Scholar 

  • Liu XZ, Wang QM, Göker M, Groenewald M, Kachalkin AV, Lumbsch HT, Millanes AM, Wedin M, Yurkov AM, Boekhout T, Bai FY (2015) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147

    Article  PubMed  Google Scholar 

  • Lynch MD, Neufeld JD (2015) Ecology and exploration of the rare biosphere. Nat Rev Microbiol 13:217–229

    Article  CAS  PubMed  Google Scholar 

  • Maksimova IA, Chernov IY (2004) Community structure of yeast fungi in forest biogeocenoses. Microbiology 73:474–481

    Article  CAS  Google Scholar 

  • Maksimova IA, Yurkov AM, Chernov IY (2009) Spatial structure of epiphytic yeast communities on fruits of Sorbus aucuparia L. Biol Bull 36:613–618

    Article  Google Scholar 

  • Mestre MC, Rosa CA, Safar SV, Libkind D, Fontenla SB (2011) Yeast communities associated with the bulk-soil, rhizosphere and ectomycorrhizosphere of a Nothofagus pumilio forest in northwestern Patagonia, Argentina. FEMS Microbiol Ecol 78:531–541

    Article  CAS  PubMed  Google Scholar 

  • Mishustin EN (1975) Microbial associations of soil types. Microb Ecol 2:97–118

    Article  CAS  PubMed  Google Scholar 

  • Mittelbach M, Yurkov AM, Stoll R, Begerow D (2016) Inoculation order of nectar-borne yeasts opens a door for transient species and changes nectar rewarded to pollinators. Fungal Ecol 22:90–97

    Article  Google Scholar 

  • Mokhtarnejad L, Arzanlou M, Babai-Ahari A, Di Mauro S, Onofri A, Buzzini P, Turchetti B (2016) Characterization of basidiomycetous yeasts in hypersaline soils of the Urmia Lake National Park, Iran. Extremophiles 20:915–928

    Article  CAS  PubMed  Google Scholar 

  • Morais PB, Hagler AN, Rosa CA, Mendonça-Hagler LC, Klaczko LB (1992) Yeasts associated with Drosophila in tropical forests of Rio de Janeiro, Brazil. Can J Microbiol 38:1150–1155

    Article  CAS  PubMed  Google Scholar 

  • Morais PB, Martins MB, Klaczko LB, Mendonça-Hagler LC, Hagler AN (1995) Yeast succession in the Amazon fruit Parahancornia amapa as resource partitioning among Drosophila spp. Appl Environ Microbiol 61:4251–4257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morais PB, Rosa CA, Linardi VR, Pataro C, Maia ABRA (1997) Short communication: characterization and succession of yeast populations associated with spontaneous fermentations during the production of Brazilian sugar-cane aguardente. World J Microbiol Biotechnol 13:241–243

    Article  Google Scholar 

  • Naumova ES, Naumov GI, Molina FI (2000) Genetic variation among European strains of Saccharomyces paradoxus: results from DNA fingerprinting. Syst Appl Microbiol 23:86–92

    Article  CAS  Google Scholar 

  • Nix SS, Burpee LL, Jackson KL, Buck JW (2008) Short-term temporal dynamics of yeast abundance on the tall fescue phylloplane. Can J Microbiol 54:299–304

    Article  CAS  PubMed  Google Scholar 

  • Nix-Stohr SS, Burpee LL, Jackson KL, Buck JW (2008) The influence of exogenous nutrients on the abundance of yeasts on the phylloplane of turfgrass. Microb Ecol 55:15–20

    Article  PubMed  Google Scholar 

  • O’Malley MA (2008) ‘Everything is everywhere: but the environment selects’: ubiquitous distribution and ecological determinism in microbial biogeography. Stud Hist Philos Biol Biomed Sci 39:314–325

    Google Scholar 

  • Oldfield JD, Shaw DJ (2015) A Russian geographical tradition? The contested canon of Russian and Soviet geography, 1884–1953. J Hist Geogr 49:75–84

    Article  Google Scholar 

  • Phaff HJ, Starmer WT (1987) Yeasts associated with plants, insects and soil. In: H. Rose, JS Harrison (eds) The yeasts, vol 1. Academic Press, London, pp 123–180

    Google Scholar 

  • Phaff HJ, Miller MW, Spencer JFT (1964) Two new species of Pichia isolated from slime fluxes of deciduous trees. Antonie van Leeuwenhoek 30:132–140

    Article  CAS  PubMed  Google Scholar 

  • Polyakova AV, Chernov IY, Panikov NS (2001) Yeast diversity in hydromorphic soils with reference to a grass–sphagnum wetland in western Siberia and a hummocky tundra region at Cape Barrow (Alaska). Microbiology 70:617–623

    Article  CAS  Google Scholar 

  • Pozo MI, Herrera CM, Bazaga P (2011) Species richness of yeast communities in floral nectar of southern Spanish plants. Microb Ecol 61:82–91

    Article  PubMed  Google Scholar 

  • Raspor P, Zupan J (2006) Yeasts in extreme environments. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 371–417

    Chapter  Google Scholar 

  • Rosa CA, Morais PB, Hagler AN, Mendonça-Hagler LC, Monteiro RF (1994) Yeast communities of the cactus Pilosocereus arrabidae and associated insects in the Sandy Coastal Plains of Southeastern Brazil. Antonie van Leeuwenhoek 65:55–62

    Article  CAS  PubMed  Google Scholar 

  • Rosindell J, Hubbell SP, Etienne RS (2011) The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol Evol 26:340–348

    Article  PubMed  Google Scholar 

  • Sampaio JP (2004) Diversity, phylogeny and classification of basidiomycetous yeasts. In: Agerer R, Piepenbring M, Blanz P (eds) Frontiers in basidiomycete mycology. IHW-Verlag Verlagsbuchhandlung, Eching, pp 49–80

    Google Scholar 

  • Sampaio JP, Gonçalves P (2008) Natural populations of Saccharomyces kudriavzevii in Portugal are associated with oak bark and are sympatric with S. cerevisiae and S. paradoxus. Appl Environ Microbiol 74:2144–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santiago IF, Soares MA, Rosa CA, Rosa LH (2015) Lichensphere: a protected natural microhabitat of the non-lichenised fungal communities living in extreme environments of Antarctica. Extremophiles 19:1087–1097

    Article  PubMed  Google Scholar 

  • Schwan RF, Wheals AE (2004) The microbiology of cocoa fermentation and its role in chocolate quality. Crit Rev Food Sci Nutr 44:205–221

    Article  CAS  PubMed  Google Scholar 

  • Scorzetti G, Fell JW, Fonseca A, Statzell-Tallman A (2002) Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Res 2:495–517

    Article  CAS  PubMed  Google Scholar 

  • Selbmann L, Zucconi L, Onofri S, Cecchini C, Isola D, Turchetti B, Buzzini P (2014) Taxonomic and phenotypic characterization of yeasts isolated from worldwide cold rock-associated habitats. Fungal Biol 118:61–71

    Article  CAS  PubMed  Google Scholar 

  • Setati ME, Jacobson D, Andong UC, Bauer F (2012) The vineyard yeast microbiome, a mixed model microbial map. PLoS One 7:e52609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sláviková E, Vadkertiová R (2000) The occurrence of yeasts in the forest soils. J Basic Microb 40:207–212

    Article  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Starkey RL, Henrici AT (1927) The occurrence of yeasts in soil. Soil Sci 23:33–46

    Article  CAS  Google Scholar 

  • Starmer WT (1981) A comparison of Drosophila habitats according to the physiological attributes of the associated yeast communities. Evolution 35:38–52

    Article  CAS  PubMed  Google Scholar 

  • Starmer WT, Lachance M-A (2011) Yeast ecology. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, New York, pp 65–83

    Chapter  Google Scholar 

  • Starmer WT, Aberdeen V, Lachance MA (2006) The biogeographic diversity of cactophilic yeasts. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 485–499

    Chapter  Google Scholar 

  • Stevens GC (1989) The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am Nat 133:240–256

    Article  Google Scholar 

  • Suh SO, McHugh JV, Pollock DD, Blackwell M (2005) The beetle gut: a hyperdiverse source of novel yeasts. Mycol Res 109:261–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takashima M, Sugita T, Shinoda T, Nakase T (2003) Three new combinations from the Cryptococcus laurentii complex: Cryptococcus aureus, Cryptococcus carnescens and Cryptococcus peneaus. Int J Syst Evol Microbiol 53:1187–1194

    Article  CAS  PubMed  Google Scholar 

  • Taylor JW, Turner E, Townsend JP, Dettman JR, Jacobson D (2006) Eukaryotic microbes, species recognition and the geographic limits of species: examples from the kingdom Fungi. Philos Trans R Soc Lond B Biol Sci 361:1947–1963

    Article  PubMed  PubMed Central  Google Scholar 

  • Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Vaughan-Martini A (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 63:73–83

    Article  CAS  PubMed  Google Scholar 

  • Turchetti B, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Onofri A, Buzzini P (2013) Influence of abiotic variables on culturable yeast diversity in two distinct Alpine glaciers. FEMS Microbiol Ecol 86:327–340

    Article  CAS  PubMed  Google Scholar 

  • Turchetti B, Selbmann L, Blanchette RA, Di Mauro S, Marchegiani E, Zucconi L, Arenz BE, Buzzini P (2015) Cryptococcus vaughanmartiniae sp. nov. and Cryptococcus onofrii sp. nov.: two new species isolated from worldwide cold environments. Extremophiles 19:149–159

    Article  PubMed  Google Scholar 

  • Vannette RL, Gauthier MPL, Fukami T (2013) Nectar bacteria, but not yeast, weaken a plant–pollinator mutualism. Proc R Soc B Biol Sci 280:20122601

    Article  Google Scholar 

  • Vasileva-Tonkova E, Romanovskaya V, Gladka G, Gouliamova D, Tomova I, Stoilova-Disheva M, Tashyrev O (2014) Ecophysiological properties of cultivable heterotrophic bacteria and yeasts dominating in phytocenoses of Galindez Island, maritime Antarctica. World J Microbiol Biotechnol 30:1387–1398

    Article  CAS  PubMed  Google Scholar 

  • Vinovarova ME, Babjeva IP (1987) Yeast fungi in steppe communities. Vestn Mosk Univ Ser Pochvoved 2:43–48 (in Russian)

    Google Scholar 

  • Vishniac HS (2006a) Yeast biodiversity in the Antarctic. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 419–440

    Chapter  Google Scholar 

  • Vishniac HS (2006b) A multivariate analysis of soil yeasts isolated from a latitudinal gradient. Microb Ecol 52:90–103

    Article  PubMed  Google Scholar 

  • Wang QM, Yurkov AM, Göker M, Lumbsch HT, Leavitt SD, Groenewald M, Theelen B, Liu XZ, Boekhout T, Bai FY (2015) Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol 81:149–189

    Article  PubMed  Google Scholar 

  • Weiss M, Bauer R, Sampaio JP, Oberwinkler F (2014) Tremellomycetes and related groups. In: McLaughlin D, Spatafora JW (eds) The mycota, systematics and evolution, vol 7A. Springer, Berlin, pp 331–355

    Chapter  Google Scholar 

  • Wuczkowski M, Prillinger H (2004) Molecular identification of yeasts from soils of the alluvial forest national park along the river Danube downstream of Vienna, Austria (“Nationalpark Donauauen”). Microbiol Res 159:263–275

    Article  CAS  PubMed  Google Scholar 

  • Yurkov AM (2017) Yeasts in forest soils. In: Buzzini P, Lachance MA, Yurkov AM (eds) Yeasts in natural ecosystems: diversity. Springer International Publishing, pp 87–116

    Google Scholar 

  • Yurkov AM, Chernov IY (2005) Geographical races of certain species of ascomycetous yeasts in the Moscow and Novosibirsk regions. Microbiology 74:597–601

    Article  CAS  Google Scholar 

  • Yurkov A, Maximova IA, Chernov IY (2004) The comparative analysis of yeast communities in birch forests of the European part of Russia and Western Siberia. Mikol Fitopatol 38:71–79 (in Russian)

    Google Scholar 

  • Yurkov AM, Chernov IY, Tiunov AV (2008) Influence of Lumbricus terrestris earthworms on the structure of the yeast community of forest litter. Microbiology 77:107–111

    Article  CAS  Google Scholar 

  • Yurkov AM, Kemler M, Begerow D (2011) Species accumulation curves and incidence-based species richness estimators to appraise the diversity of cultivable yeasts from beech forest soils. PLoS One 6:e23671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yurkov AM, Kemler M, Begerow D (2012a) Assessment of yeast diversity in soils under different management regimes. Fungal Ecol 5:24–35

    Article  Google Scholar 

  • Yurkov A, Wehde T, Kahl T, Begerow D (2012b) Aboveground deadwood deposition supports development of soil yeasts. Diversity 4:453–474

    Article  Google Scholar 

  • Yurkov A, Inácio J, Chernov IY, Fonseca A (2015a) Yeast biogeography and the effects of species recognition approaches: the case study of widespread basidiomycetous species from birch forests in Russia. Curr Microbiol 70:587–601

    Article  CAS  PubMed  Google Scholar 

  • Yurkov A, Guerreiro MA, Sharma L, Carvalho C, Fonseca Á (2015b). Multigene assessment of the species boundaries and sexual status of the basidiomycetous yeasts Cryptococcus flavescens and C. terrestris (Tremellales). PloS One 10:e0120400

    Google Scholar 

  • Yurkov AM, Röhl O, Pontes A, Carvalho C, Maldonado C, Sampaio JP (2016) Local climatic conditions constrain soil yeast diversity patterns in Mediterranean forests, woodlands and scrub biome. FEMS Yeast Res 16:fov103

    Google Scholar 

  • Zhang H, Skelton A, Gardner RC, Goddard MR (2010) Saccharomyces paradoxus and Saccharomyces cerevisiae reside on oak trees in New Zealand: evidence for migration from Europe and interspecies hybrids. FEMS Yeast Res 10:941–947

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Marc-André Lachance is acknowledged for his kind mentoring, for valuable suggestions, and for correcting the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Yurkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Yurkov, A. (2017). Temporal and Geographic Patterns in Yeast Distribution. In: Buzzini, P., Lachance, MA., Yurkov, A. (eds) Yeasts in Natural Ecosystems: Ecology . Springer, Cham. https://doi.org/10.1007/978-3-319-61575-2_4

Download citation

Publish with us

Policies and ethics