Skip to main content

Yeasts as Distinct Life Forms of Fungi

  • Chapter
  • First Online:

Abstract

Detection, identification, and classification of yeasts have undergone major changes since application of gene sequence analyses and genome comparisons. Development of a database of barcodes consisting of easily determined DNA sequences from domains 1 and 2 (D1/D2) of the nuclear large subunit rRNA gene and from ITS now permits many laboratories to identify species quickly and accurately, thus replacing the laborious and often inaccurate phenotypic tests previously used. Phylogenetic analysis of gene sequences is leading to a major revision of yeast systematics that will result in redefinition of nearly all genera. This new understanding of species relationships has prompted a change of rules for naming and classifying yeasts and other fungi, and these new rules were recently implemented in the International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). The use of molecular methods for species identification and the impact of Code changes on classification will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aime MC, Matheny PB, Henk DA, Frieders EM, Nilsson RH, Piepenbring M, McLaughlin DJ, Szabo LJ, Begero D, Sampaio JP, Bauer R, Weis M, Oberwinkler F, Hibbett DS (2006) An overview of the higher-level classification of Pucciniomycotina based on combined analyses of nuclear large and small subunit rDNA sequences. Mycologia 98:896–905

    Google Scholar 

  • Amend A (2014) From dandruff to deep-sea vents: Malassezia-like fungi are ecologically hyper-diverse. PLoS Pathog 10:e1004277

    Article  PubMed  PubMed Central  Google Scholar 

  • Bandoni RJ (1995) Dimorphic heterobasidiomycetes: taxonomy and parasitism. Stud Mycol 38:13–27

    Google Scholar 

  • Banno I (1967) Studies on the sexuality of Rhodotorula. J Gen Appl Microbiol 13:249–251

    Google Scholar 

  • Batra R, Boekhout T, Guého E, Cabañes FJ, Dawson TL J Gupta AK (2005) Malassezia Baillon, emerging clinical yeasts. FEMS Yeast Res 5:1101–1113

    Google Scholar 

  • Bauer R, Begerow D, Sampaio JP, Weiβ M, Oberwinkler F (2006) The simple-sepatate basidiomycetes: a synopsis. Mycol Progr 5:41–66

    Google Scholar 

  • Begerow D, Bauer R, Oberwinkler, F (1997) Phylogenetic studies on nuclear large subunit ribosomal DNA sequences of smut fungi and related taxa. Can J Bot 75:2045–2056

    Google Scholar 

  • Begerow D, Bauer R, Boekhout T (2000) Phylogenetic placements of ustilaginomycetous anamorphs as deduced from nuclear LSU rDNA sequences. Mycol Res 104:53–60

    Google Scholar 

  • Belangér RR, Dik AJ, Menzies JG (1998) Powdery mildews: recent advances towards integrated control. In: Boland GJ, Kuykendall LD (eds) Plant-microbe interactions and biological control. Marcel Dekker, New York, pp 89–109

    Google Scholar 

  • Bergman A, Fernandez V, Holmström KO, Claesson BEEnroth H (2007) Rapid identification of pathogenic yeast isolates by real-time PCR and two-dimensional melting-point analysis. Eur J Clin Microbiol Infect Dis 26:813–818

    Google Scholar 

  • Blanz PA, Gottschalk M (1984) A comparison of 5S ribosomal RNA nucleotide sequences from smut fungi. Syst Appl Microbiol 5:518–526

    Google Scholar 

  • Boekhout T, Fonseca A, Batenburg-van der Vegte WH (1991) Bulleromyces genus novum (Tremellales), a teleomorph for Bullera alba, and the occurrence of mating in Bullera variabilis. Antonie van Leeuwenhoek 59:81–93

    Google Scholar 

  • Boekhout T, Theelen B, Houbraken J, Robert V, Scorzetti G, Gafni A, Gerson U, Sztejnberg A (2003) Novel anamorphic mite-associated fungi belonging to the ustilaginomycetes: Meira geulakonigii gen. nov., sp. nov., Meira argovae sp. nov. and Acaromyces ingoldii gen. nov., sp. nov. Int J Syst Evol Microbiol 53:1655–1664

    Article  CAS  PubMed  Google Scholar 

  • Boekhout T, Bandoni RJ, Fell JW, Kwon-Chung KJ, Sampaio JP, Fonseca A (2011) Discussion of teleomorphic and anamorphic genera of heterobasidiomycetous yeasts. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 1339–1374

    Google Scholar 

  • Cain RF (1972) Evolution of the fungi. Mycologia 64(1):14

    Article  Google Scholar 

  • Casey GC, Dobson DW (2004) Potential of using real-time PCR-based detection of spoilage yeast in fruit juice – a preliminary study. Int J Food Microbiol 91:327–335

    Google Scholar 

  • Cassagne C, Cella AL, Suchon P, Normand AC, Ranque S, Piarroux R (2013) Evaluation of four pretreatment procedures for MALDI-TOF MS yeast identification in the routine clinical laboratory. Med Mycol 51:371–377

    Google Scholar 

  • Cendejas-Bueno E, Kolecka A, Alastruey-Izquierdo A, Theelen B, Groenewald M, Kostrzewa M, Cuenca-Estrella M, Gómez-López A, Boekhout T (2012) Reclassification of the Candida haemulonii complex as Candida haemulonii (C. haemulonii group I), C. duobushaemulonii sp. nov. (C. haemulonii group II), and C. haemulonii var. vulnera var. nov.: three multiresistant human pathogenic yeasts. J Clin Microbiol 50:3641–3651

    Google Scholar 

  • Chapman DD, Abercrombie DL, Douady CJ, Pikitch EK, Stanhopen MJ, Shivji MS (2003) A streamlined, bi-organelle, multiplex PCR approach to species identification: application to global conservation and trade monitoring of the great white shark. Cons Genet 4:415–425

    Article  CAS  Google Scholar 

  • Chen CJ (1998) Morphological and molecular studies in the genus Tremella. Bibl Mycol 174:1–225

    Google Scholar 

  • Cho H, Yamagishi K, Abe S, Morioka S (1998) Method of producing erythritol. US patent 5,981,241

    Google Scholar 

  • Cocolin L, Heisey A, Mills DA (2001) Direct identification of the indigenous yeasts in commercial wine fermentations. Am J Enol Vitic 52:49–53

    CAS  Google Scholar 

  • Cuadros-Orellana S, Rabelo Leite L, Smith A, Dutra Medeiros J, Badotti F, Fonseca PLC, Vaz ABM, Oliveira G, Góes-Neto A (2013) Assessment of fungal diversity in the environment using metagenomics: a decade in review. Fungal Genom Biol 3:110

    Google Scholar 

  • Daniel HM, Lachance MA, Kurtzman CP (2014) On the reclassification of species assigned to Candida and other anamorphic ascomycetous yeast genera based on phylogenetic circumscription. Antonie van Leeuwenhoek 106:67–84

    Google Scholar 

  • de Barros Lopes M, Rainiere S, Henschje PA, Langridge P (1999) AFLP fingerprinting for analysis of yeast genetic variation. Int J Syst Bacteriol 49:915–924

    Google Scholar 

  • de Hoog GS, Smith MTh, Rosa CA (2011) Moniliella Stolk & Dakin (1966). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 1837–1846

    Google Scholar 

  • Diaz MR, Fell JW (2004) High-throughput detection of pathogenic yeasts of the genus Trichosporon. J Clin Microbiol 42:3696–3706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fell JW (1993) Rapid identification of yeast species using three primers in a polymerase chain reaction. Mol Mar Biol Biotechnol 2:174–180

    CAS  PubMed  Google Scholar 

  • Fell JW, Boekhout T, Freshwater DW (1995) The role of nucleotide sequence analysis in the systematics of the yeast genera Cryptococcus and Rhodotorula. Stud Mycol 38:129–146

    Google Scholar 

  • Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371

    Google Scholar 

  • Firacative C, Trilles L, Meyer W (2012) MALDI-TOF MS enables the rapid identification of the major molecular types within the Cryptococcus neoformans/C. gattii species complex. PLoS One 7:e37566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick DA, Logue ME, Stajich JE, Butler G (2006) A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol Biol 6:99–113

    Google Scholar 

  • Fungsin B, Takashima M, Sugita T, Atjariyasripong S, Potacharoen W, Tanticharoen M, Nakase T (2006) Bullera koratensis sp. nov. and Bullera lagerstroemiae sp. nov., two new ballistoconidium-forming yeast species in the Trichosporonales-clade isolated from plant leaves in Thailand. J Gen Appl Microbiol 52:73–81

    Google Scholar 

  • Gadanho M, Almeida JM, Sampaio JP (2003) Assessment of yeast diversity in a marine environment in the south of Portugal by microsatellite-primed PCR. Antonie van Leeuwenhoek 84:217–227

    Google Scholar 

  • Gaitanis G, Magiatis P, Hantschke M, Bassukas ID, Velegraki A (2012) The Malassezia genus in skin and systemic diseases. Clin Microbiol Rev 25:106–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Golubev WI (1995) Perfect state of Rhodomyces dendrorhous (Phaffia rhodozyma). Yeast 11:101–110

    Google Scholar 

  • Groth C, Hansen J, Piskur J (1999) A natural chimeric yeast containing genetic material from three species. Int J Syst Bacteriol 49:1933–1938

    Google Scholar 

  • Guilliermond A (1912) Les levures. Encyclopédie Scientifique. O Doin et Fils, Paris

    Google Scholar 

  • Gupta AK, Batra R, Bluhm R, Boekhout T, Dawson TL (2004) Skin diseases associated with Malassezia species. J Am Acad Dermatol 51:785–798

    Google Scholar 

  • Hagen H, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, Falk R, Parnmen S, Lumbsch HT, Boekhout T (2015) Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol 78:16–48

    Google Scholar 

  • Hibbett DS (2006) A phylogenetic overview of the Agaricomycotina. Mycologia 98:917–925

    Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Thorsten Lumbsch H, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüssler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547

    Google Scholar 

  • Hittinger CT, Rokas A, Bai FY, Boekhout T, Goncalves P, Jeffries TW, Kominek J, Lachance MA, Libkind D, Rosa CA, Sampaio JP, Kurtzman CP (2015) Genomics and the making of yeast biodiversity. Curr Opin Genet Dev 35:100–109

    Google Scholar 

  • Hulin M, Wheals A (2014) Rapid identification of Zygosaccharomyces with genus-specific primers. Int J Food Microbiol 73:9–13

    Google Scholar 

  • Illnait-Zaragozí MT, Martínez-Machín GF, Fernández-Andreu CM, Perurena-Lancha MR, Theelen B, Boekhout T, Meis JF, Klaassen CH (2012) Environmental isolation and characterisation of Cryptococcus species from living trees in Havana City, Cuba. Mycoses 55:e138–e144

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüssler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822

    Google Scholar 

  • Johnson EA (2003) Phaffia rhodozyma: colorful odyssey. Int Microbiol 6:169–174

    Google Scholar 

  • Johnson EA, Echavarri-Erasun C (2011) Yeast biotechnology. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 21–44

    Google Scholar 

  • Khlif M, Mary C, Sellami H, Sellami A, Dumon H, Ayadi A, Ranque S (2009) Evaluation of nested and real-time PCR assays in the diagnosis of candidaemia. Clin Microbiol Infect 15:656–661

    Google Scholar 

  • Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Ainsworth & Bisby’s dictionary of the fungi, 9th edn. CAB, Egham

    Google Scholar 

  • Kirschner R, Sampaio JP, Gadanho M, Weiss M, Oberwinkler F (2001) Cuniculitrema polymorpha (Tremellales, gen. Nov. and sp. nov.), a heterobasidiomycete vectored by bark beetles, which is the teleomorph of Sterigmatosporidium polymorphum. Antonie van Leeuwenhoek 80:149–161

    Google Scholar 

  • Klingspor L, Jalal S (2006) Molecular detection and identification of Candida and Aspergillus spp. from clinical samples using real-time PCR. Clin Microbiol Infect 12:745–753

    Google Scholar 

  • Kluyver AJ, van Niel CB (1924) Über Spiegelbilder erzeugenden Hefenarten und die neue Hefengattung Sporobolomyces. Zentrlbl Bakteriol Parasitenk, Abt. II 63:1–20

    Google Scholar 

  • Kluyver AJ, van Niel CB (1927) Sporobolomyces: ein Basidiomyzet? Ann Mycol 25:389–394

    Google Scholar 

  • Kolecka A, Khayhan K, Groenewald M, Theelen B, Arabatzis M, Velegraki A, Kostrzewa M, Mares M, Taj-Aldeen SJ, Boekhout T (2013) Identification of medically relevant species of arthroconidial yeasts by use of matrix-assisted laser desorption ionization–time of flight mass spectrometry J Clin Microbiol 51:2491–2500

    Google Scholar 

  • Kolecka A, Khayhan K, Arabatzis M, Velegraki A, Kostrzewa M, Andersson A, Scheynius A, Cafarchia C, Iatta R, Montagna MT, Youngchim S, Cabañes FJ, Hoopman P, Kraak B, Groenewald M, Boekhout T (2014) Efficient identification of Malassezia yeasts by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). Br J Dermatol 170:332–341

    Google Scholar 

  • Kurtzman CP (1973) Formation of hyphae and chlamydospores by Cryptococcus laurentii. Mycologia 65:388–395

    Google Scholar 

  • Kurtzman CP (2009) Biotechnological strains of Komagataella (Pichia) pastoris are Komagataella phaffii as determined from multigene sequence analysis. J Ind Microbiol Biotechnol 36:1435–1438

    Google Scholar 

  • Kurtzman CP, Fell JW (1998) The yeasts, a taxonomic study, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  • Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73:331–371

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman CP, Robnett CJ (2003) Phylogenetic relationships among yeasts of the “Saccharomyces complex” determined from multigene sequence analyses. FEMS Yeast Res 3:417–432

    Google Scholar 

  • Kurtzman CP, Robnett CJ (2013) Relationships among genera of the Saccharomycotina (Ascomycota) from multigene phylogenetic analysis of type species. FEMS Yeast Res 13:23–33

    Google Scholar 

  • Kurtzman CP, Albertyn J, Basehoar-Powers E (2007) Multigene phylogenetic analysis of the Lipomycetaceae and the proposed transfer of Zygozyma species to Lipomyces and Babjevia anomala to Dipodascopsis. FEMS Yeast Res 7:1027–1034

    Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T (2011a) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T (2011b) Gene sequence analyses and other DNA-based methods for yeast species recognition. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 137–144

    Google Scholar 

  • Lachance MA, Daniel HM, Meyer W, Prasad GS, Gautam SP, Boundy-Mills K (2003) The D1/D2 domain of the large-subunit rDNA of the yeast species Clavispora lusitaniae is unusually polymorphic. FEMS Yeast Res 4:253–258

    Google Scholar 

  • Lachance MA, Boekhout T, Scorzetti G, Fell JW, Kurtzman CP (2011) Candida Berkhout. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 987–1278

    Google Scholar 

  • Libkind D, Sommaruga R, Zagarese H, van Broock M (2005) Mycosporines in carotenogenic yeasts. Syst Appl Microbiol 28:749–754

    Google Scholar 

  • Libkind D, Ruffini A, van Broock M, Alves L, Sampaio JP (2007) Biogeography, host specificity, and molecular phylogeny of the basidiomycetous yeast Phaffia rhodozyma and its sexual form, Xanthophyllomyces dendrorhous. Appl Environ Microbiol 73:1120–1125

    Google Scholar 

  • Liu X-Z, Wang Q-M, Theelen B, Groenewald M, Bai, F-Y, Boekhout, T (2015a) Phylogeny of tremellomycetous yeasts and related dimorphic basidiomycetes reconstructed from multigene sequence analyses. Stud Mycol 81:1–16

    Google Scholar 

  • Liu X-Z, Wang Q-M, Göker M, Groenewald M, Kachalkin AV, Lumbsch HT, Millanes AM, Wedin M, Yurkov AM, Boekhout T, Bai F-Y (2015b) Towards an integrated phylogenetic classification of the Tremellomycets. Phylogeny of tremellomycetous yeasts and related dimorphic basidiomycetes reconstructed from multigene sequence analyses. Stud Mycol 81:85–147

    Google Scholar 

  • Loeffler J, Henke N, Hebart H, Schmidt D, Hagmeyer L, Schumacher U, Einsele H (2000) Quantification of fungal DNA by using fluorescence resonance energy transfer and the light cycler system. J Clin Microbiol 38:586–590

    Google Scholar 

  • Mannarelli BM, Kurtzman CP (1998) Rapid identification of Candida albicans and other human pathogenic yeasts by using short oligonucleotides in a PCR. J Clin Microbiol 36:1634–1641

    Google Scholar 

  • Marklein G, Josten M, Klanke U, Muller E, Horre R, Maier T, Wenzel T, Kostrzewa M, Bierbaum G, Hoerauf A, Sahl HG (2009) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates J Clin Microbiol 47:2912–2917

    Google Scholar 

  • Masoud W, Cesar LB, Jespersen L, Jakobsen M (2004) Yeast involved in fermentation of Coffea arabica in East Africa determined by genotyping and by direct denaturing gradient gel electrophoresis. Yeast 21:549–556

    Google Scholar 

  • Matheny PB, Curtis JM, V Hofstetter V, Aime MC, Moncalvo JM, Ge ZW, Slot JC, Ammirati JF, Baroni TJ, Bougher NL, Hughes KW, Lodge DJ, Kerrigan RW, Seidl MT, Aanen DK, DeNitis M, Daniele GM, Desjardin DE, Kropp BR, Norvell LL, Parker A, Vellinga EC, Vilgalys R, Hibbett DS (2006) Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia 98:982–985

    Google Scholar 

  • McNeill J, Barrie FR, Burdet HM, Demoulin V, Hawksworth DL, Marhold K, Nicolson DH, Prado J, Silva PC, Skog JE, Wiersema JH, Turland NJ (2006) International Code of Botanical Nomenclature (Vienna Code) Regnum Veg, 146. Gantner, Ruggell, Liechtenstein

    Google Scholar 

  • McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Marhold K, et al. (2012) International Code of Nomenclature for Algae, Fungi, and Plants (Melbourne Code). Regnum Veg, 154. Koelz Scientific Books, Koenigstein, Germany

    Google Scholar 

  • McTaggart LR, Lei E, Richardson SE, Hoang L, Fothergill A, Zhang SX (2011) Rapid identification of Cryptococcus neoformans and Cryptococcus gattii by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 49:3050–3053

    Google Scholar 

  • McTaggart AR, Shivas RG, Boekhout T, Oberwinkler F, Pennycook SR, Begerow D (2016) Mycosarcoma gen. Emend. accommodates the corn smut fungus, Ustilago maydis, as well as four new combinations of smut fungi in the Ustilaginaceae. IMA Fungus 7:309–315

    Google Scholar 

  • Meroth CB, Hammes WP, Hertel C (2003) Identification and population dynamics of yeasts in sourdough fermentation processes by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 69:7453–7461

    Google Scholar 

  • Middelhoven WJ, Fonseca A, Carreiro SC, Pagnocca FC, Bueno OC (2003) Cryptococcus haglerorum, sp. nov., an anamorphic basidiomycetous yeast isolated from nests of the leaf-cutting ant Atta sexdens. Antonie van Leeuwenhoek 83:167–174

    Google Scholar 

  • Mirarab S, Reaz R, Bayzid MS, Zimmermann T, Swenson MS, Warnow T (2014) ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics 30:i541–i548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73:127–141

    Google Scholar 

  • Nagy LG, Ohm RA, Kovács GM, Floudas D, Riley R, Gácser A, Sipiczki M, Davis JM, Doty SL, de Hoog GS, Lang BF, Spatafora JW, Martin FM, Grigoriev IV, Hibbett DS (2014) Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts. Nat Commun 5:4471. doi:10.1038/ncomms5471

  • Nakase T, Tsuzuki S, Takashima M (2002) Bullera taiwanensis sp. nov. and Bullera formosensis sp. nov, two new ballistoconidium-forming yeast species isolated from plant leaves in Taiwan. J Gen Appl Microbiol 48:345–355

    Google Scholar 

  • Nasr S, Soudi MR, Fazeli SAS, Nguyen HDT, Lutz M, Piątek M (2014) Expanding evolutionary diversity in the Ustilaginomycotina: Fereydouniaceae fam. Nov. and Fereydounia gen. Nov., the first urocystidalean yeast lineage. Mycol Progr 13:1217–1226

    Google Scholar 

  • Nguyen HD, Chabot D, Hirooka Y, Roberson RW, Seifert KA (2015) Basidioascus undulatus: genome, origins, and sexuality. IMA Fungus 6:215–231

  • Nishida H, Katsuhiko A, Ando Y, Hirata A, Sugiyama J (1995) Mixia osmundae: transfer from the Ascomycota to the Basidiomycota based on evidence from molecules and morphology. Can J Bot (Suppl 1):S660–S666

    Google Scholar 

  • Nyland G (1949) Studies on some unusual Heterobasidiomycetes from Washington State. Mycologia 40:478–481

    Google Scholar 

  • Okoli I, Oyeka CA, Kwon-Chung KJ, Theelen B, Robert V, Groenewald JZ, McFadden DC, Casadevall A, Boekhout T (2007) Cryptotrichosporon anacardii gen. Nov., sp. nov., a new trichosporonoid capsulate basidiomycetous yeast from Nigeria that is able to form melanin on niger seed agar. FEMS Yeast Res 7:339–350

    Google Scholar 

  • Page BT, Kurtzman CP (2005) Rapid identification of Candida and other clinically important yeast species by flow cytometry. J Clin Microbiol 43:4507–4514

    Google Scholar 

  • Peterson SW, Kurtzman CP (1991) Ribosomal RNA sequence divergence among sibling species of yeasts. Syst Appl Microbiol 14:124–129

    Google Scholar 

  • Prakitchaiwattana CJ, Fleet GH, Heard GM (2004) Application and evaluation of denaturing gradient gel electrophoresis to analyse the yeast ecology of wine grapes. FEMS Yeast Res 4:865–877

    Google Scholar 

  • Prillinger H, Lopandic K, Sugita T, Wuczkowski M (2007) Asterotremella gen. Nov. albida, an anamorphic tremelloid yeast isolated from the agarics Asterophora lycoperdoides and Asterophora parasitica. J Gen Appl Microbiol 53:167–175

    Google Scholar 

  • Rigby S, Procop GW, Haase G, Wilson D, Hall G, Kurtzman C, Oliveira K, Von Oy S, Hyldig-Nielsen JJ, Coull J, Stender H (2002) Fluorescence in situ hybridization with peptide nucleic acid probes for rapid identification of Candida albicans directly from blood culture bottles. J Clin Microbiol 40:2182–2186

    Google Scholar 

  • Riley R, Haridas S, Wolfe KH, Lopes MR, Hittinger CT, Goker M, Salamov AA, Wisecaver JH, Long TM, Calvey CH, Aerts AL, Barry KW, Choi C, Clum A, Coughlan AY, Deshpande S, Douglass AP, Hanson SJ, Klenk HP, LaButti KM, Lapidus A, Lindquist EA, Lipzen AM, Meier-Kolthoff JP, Ohm RA, Otillar RP, Pangilinan JL, Peng Y, Rokas A, Rosa CA, Scheuner C, Sibirny AA, Slot JC, Stielow JB, Sun H, Kurtzman CP, Blackwell M, Grigoriev IV, Jeffries TW (2016) Comparative genomics of biotechnologically important yeasts. Proc Natl Acad Sci USA 113:9882–9887

    Google Scholar 

  • Rokas A (2016) Systematics in the age of genomics. In: Olson PD, Hughes J, Cotton JA (eds) Next generation systematics. Cambridge University Press, Cambridge, pp 219–228

    Google Scholar 

  • Rosling A, Cox F, Cruz-Martinez K, Ihrmark K, Grelet G-A, Lindahl BD, Menkis A, James TY (2011) Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi. Science 333:876–879

    Google Scholar 

  • Sampaio JP (2004) Diversity, phylogeny and classification of basidiomycetous yeasts. In: Agerer R, Piepenbring M, Blanz P (eds) Frontiers in basidiomycete mycology. IHW-Verlag, Eching, pp 49–80

    Google Scholar 

  • Sampaio JP, Weiss M, Gadanho M, Bauer R (2002) New taxa in the Tremellales: Bulleribasidium oberjochense gen. et sp. nov., Papiliotrema bandonii gen. et sp. nov. and Fibulobasidium murrhardtense sp. nov. Mycologia 94:873–887

    Google Scholar 

  • Sampaio JP, Inacio J, Fonseca A, Gadanho M, Spencer-Martins I, Scorzetti G, Fell JW (2004) Auriculibuller fuscus gen. nov., sp. nov. and Bullera japonica sp. nov., novel taxa in the Tremellales. Int J Syst Evol Microbiol 54:987–993

    Article  CAS  PubMed  Google Scholar 

  • Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O (2000) Introduction to food and airborne fungi. CBS, Utrecht

    Google Scholar 

  • Santos MA, Ueda T, Watanabe K, Tuite MF (1997) The non-standard genetic code of Candida spp.: an evolving genetic code or a novel mechanism for adaptation? Mol Microbiol 26:423–431

    Google Scholar 

  • Santos MA, Gomes AC, Santos MC, Carreto LC, Moura GR (2011) The genetic code of the fungal CTG clade. C R Biol 334:607–611

    Article  CAS  PubMed  Google Scholar 

  • Scorzetti G, Fell JW, Fonseca A, Statzell-Tallman A (2002) Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Res 2:495–517

    Google Scholar 

  • Shen XX, Zhou X, Kominek J, Kurtzman CP, Hittinger CT, Rokas A (2016) Reconstructing the backbone of the Saccharomycotina yeast phylogeny using genome-scale data. G3 (Bethesda). pii: g3.116.034744. doi:10.1534/g3.116.034744

  • Stender H, Kurtzman C, Hyldig-Nielsen JJ, Sørensen D, Broomer A, Oliveira K, Perry-O’Keefe H, Sage A, Young B, Coull J (2001) Identification of Dekkera bruxellensis (Brettanomyces) from wine by fluorescence in situ hybridization using peptide nucleic acid probes. Appl Environ Microbiol 67:938–941

    Google Scholar 

  • Sugita T, Nishikawa A, Ikeda R, Shinoda T (1999) Identification of medically relevant Trichosporon species based on sequences of internal transcribed spacer regions and construction of a database for Trichosporon identification. J Clin Microbiol 37:1985–1993

    Google Scholar 

  • Sugita T, Takashima M, Nakase T, Ichikawa T, Ikeda R, Shinoda T (2001) Two new yeasts, Trichosporon debeurmannianum spec. Nov. and Trichosporon dermatis sp. nov., transferred from the Cryptococcus humicola complex. Int J Syst Evol Microbiol 51:1221–1228

    Google Scholar 

  • Sugiyama J (1998) Relatedness, phylogeny, and evolution of the fungi. Mycoscience 39:487–511

    Google Scholar 

  • Swann EC, Taylor JW (1995) Phylogenetic perspectives on basidiomycete systematics: evidence from the 18S rRNA gene. Can J Bot 73(Suppl 1):S862–S868

    Article  CAS  Google Scholar 

  • Takashima M, Sugita T, Shinoda T, Nakase T (2001) Reclassification of the Cryptococcus humicola complex. Int J Syst Evol Microbiol 51:2199–2210

    Google Scholar 

  • Tan KE, Ellis BC, Lee R, Stamper PD, Zhang SX, Carroll KC (2012) Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J Clin Microbiol 50:3301–3308

    Google Scholar 

  • Tap RM, Ramli NY, Sabaratnam P, Hashim R, Bakri AR, Bee LB, Ginsapu SJ, Ahmad R, Razak MF, Ahmad N (2016) First Two cases of fungal infections associated with multi-drug resistant yeast, Fereydounia khargensis. Mycopathologia 181:531–537

  • Templeton AR (1983) Systematics of basidiomycetes based on 5S rRNA sequences and other data. Nature 303:731

    Article  Google Scholar 

  • Tonge DP, Pashley CH, Gant TW (2014) Amplicon-based metagenomic analysis of mixed fungal samples using proton release amplicon sequencing. PLoS One 9:e93849

    Article  PubMed  PubMed Central  Google Scholar 

  • Urquehart EJ, Menzies JG, Punja ZK (1994) Growth and biological control activity in Tilletiopsis species against powdery mildew (Sphaerotheca fuliginea) on greenhouse cucumber. Phytopathology 84:341–351

    Google Scholar 

  • von Arx JA, van der Walt JP (1987) Ophiostomatales and Endomycetales. Stud Mycol 30:167–176

    Google Scholar 

  • Walker WF (1985) 5S ribosomal RNA sequences from ascomycetes and evolutionary implications. Syst Appl Microbiol 6:48–53

    Google Scholar 

  • Walker WF, Doolittle WF (1982). Redividing the basidiomycetes on the basis of 5S rRNA nucleotide sequences. Nature 299:723–724

    Google Scholar 

  • Wang Q-M, Theelen B, Groenewald M, Bai F-Y, Boekhout T (2014) Moniliellomycetes and Malasseziomycetes, two new classes in Ustilaginomycotina. Persoonia 33:41–47

    Google Scholar 

  • Wang Q-M, Groenewald M, Takashima M, Theelen B, Han P-J, Liu X-Z, Boekhout T, Bai, F-Y (2015a) Phylogeny of yeasts and related filamentous fungi within Pucciniomycotina determined from multigene gene sequence analyses. Stud Mycol 81:27–53

    Google Scholar 

  • Wang Q-M, Yurkov AM, Göker M, Lumbsch HT, Leavitt SD, Groenewald M, Theelen B, Liu X-Z, Boekhout T, Bai F-Y (2015b) Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol 81:27–53

    Google Scholar 

  • Wang Q-M, Begerow D, Groenewald M, Liu X-Z, Theelen B, Bai F-Y, Boekhout T (2015c) Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina. Stud Mycol 81:55–83

    Google Scholar 

  • Weiss M, Bauer R, Begerow D (2004) Spotlights on heterobasidiomycetes. In: Agerer R, Piepenbring M, Blanz P (eds) Frontiers in basidiomycete mycology. IHW-Verlag, Eching, pp 7–48

    Google Scholar 

  • Wellinghausen N, Siegel D, Winter J, Gebert S (2009) Rapid diagnosis of candidaemia by real-time PCR detection of Candida DNA in blood samples. J Med Microbiol 58:1106–1111

    Google Scholar 

  • Wu G, Zhao H, Li C, Rajapakse MP, Wong WC, Xu J, Saunders C, Reeder NL, Reilman RA, Scheynius A, Sun S, Billmyre BR, Li WJ, Averette A, Mieczkowski P, Heitman J, Theelen B, Schröder M, Florez De Sessions P, Butler G, Maurer-Stroh S, Boekhout T, Nagarajan N, Dawson TL (2015) Genus-wide comparative genomics of Malassezia delineates its phylogeny, physiology, and niche adaptation on human skin. PLoS Genet 11:e1005614

    Article  PubMed  PubMed Central  Google Scholar 

  • Wuczkowski M, Passoth V, Turchetti B, Andersson AC, Olstorpe M, Laitila A, Theelen B, van Broock M, Buzzini P, Prillinger H, Sterflinger K, Schnürer J, Boekhout T, Libkind D (2011) Description of Holtermanniella gen. Nov., including Holtermanniella takashimae sp. nov. and four new combinations, and proposal of the order Holtermanniales to accommodate tremellomycetous yeasts of the Holtermannia clade. Int J Syst Evol Microbiol 61:680–689

    Google Scholar 

  • Zalar P, de Hoog GS, Schroers HJ, Frank JM, Gunde-Cimerman N (2005) Taxonomy and hylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.). Antonie van Leeuwenhoek 87:311–328

Download references

Acknowledgments

We thank Robert Riley for providing Fig. 1.1 and Antonis Rokas and Chris Hittinger for Fig. 1.3. Figure 1.3 is based upon work supported by National Science Foundation Grant No. DEB-1442148. The mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. The USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cletus P. Kurtzman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kurtzman, C.P., Boekhout, T. (2017). Yeasts as Distinct Life Forms of Fungi. In: Buzzini, P., Lachance, MA., Yurkov, A. (eds) Yeasts in Natural Ecosystems: Ecology . Springer, Cham. https://doi.org/10.1007/978-3-319-61575-2_1

Download citation

Publish with us

Policies and ethics