Skip to main content

Ising-Model Optimizer with Parallel-Trial Bit-Sieve Engine

  • Conference paper
  • First Online:
Book cover Complex, Intelligent, and Software Intensive Systems (CISIS 2017)

Abstract

We propose a hardware architecture for solving combinatorial optimization problems and implemented it on an FPGA. The hardware minimizes the energy of Ising model with 1,024 state variables fully connectable through 16-bit weights, which ease restrictions on mapping problems onto the Ising model. The system uses a hardware bit-sieve engine that performs a Markov-chain Monte-Carlo search with a parallel-evaluation of the energy increment prior to the bit selection, achieving a speedup while guaranteeing convergence. The engine is implemented on an Arria 10 GX FPGA and solves 32-city traveling salesman problems 104 times faster than simulated annealing running on a 3.5-GHz Intel Xeon E5-1620v3 processor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merolla, P.A., et al.: A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197), 668–673 (2014)

    Article  Google Scholar 

  2. Akopyan, F., et al.: TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip. IEEE Trans Comput. Aided Des. Integr. Circ. Syst. 34, 1537–1557 (2015)

    Article  Google Scholar 

  3. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing unit. In: Proceedings of 44th International Symposium on Computer Architecture, June 2017

    Google Scholar 

  4. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79, 2254–2558 (1982)

    Article  MathSciNet  Google Scholar 

  5. Aarts, Emile H.L., Korst, Jan H.M.: Boltzmann machines and their applications. In: Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE 1987. LNCS, vol. 258, pp. 34–50. Springer, Heidelberg (1987). doi:10.1007/3-540-17943-7_119

    Chapter  Google Scholar 

  6. Skubiszewski, M.: An exact hardware implementation of the boltzmann machine. In: Proceedings of the Fourth IEEE Symposium on Parallel and Distributed Processing, pp. 107–110 (1992)

    Google Scholar 

  7. Yamaoka, M., et al.: 20 k-spin Ising Chip for Combinational Optimization Problem with CMOS Annealing. ISSCC 2015 digest of technical papers, pp. 1–3, February 2015

    Google Scholar 

  8. Johnson, M.W., et al.: Quantum annealing with manufactured spins. Nature 473, 194–198 (2011)

    Article  Google Scholar 

  9. Bunyk, P., et al.: Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Trans. Appl. Supercond. 24(4), 1–10 (2014)

    Article  Google Scholar 

  10. ALTERA: Arria 10 FPGA development kit user guide, May 2016

    Google Scholar 

  11. Hukushima, K., Nemoto, K.: Exchange monte carlo method and application to spin glass simulations. J. Phys. Soc. Jpn. 65, 1604 (1996)

    Article  Google Scholar 

  12. DeGloria, A., et al.: Application specific parallel architectures. In: Proceedings of First International Conference on Massively Parallel Computing Systems (MPCS), pp. 497–512 (1994)

    Google Scholar 

  13. Metropolis, N., et al.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)

    Article  Google Scholar 

  14. Bortz, et al.: A new algorithm for monte carlo simulation of ising spin systems. J. Comput. Phys. 17, 10–18 (1985)

    Article  Google Scholar 

  15. Schulze, T.P.: Efficient kinetic Monte Carlo simulation. J. Comput. Phys. 227, 2455–2462 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhu, H., et al.: Boltzmann Machine with Non-rejective Move. IEICE Trans. Fundam. E85-A, 1229–1235 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Matsubara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Matsubara, S. et al. (2018). Ising-Model Optimizer with Parallel-Trial Bit-Sieve Engine. In: Barolli, L., Terzo, O. (eds) Complex, Intelligent, and Software Intensive Systems. CISIS 2017. Advances in Intelligent Systems and Computing, vol 611. Springer, Cham. https://doi.org/10.1007/978-3-319-61566-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61566-0_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61565-3

  • Online ISBN: 978-3-319-61566-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics