Skip to main content

A Kernel Support Vector Machine Based Technique for Crohn’s Disease Classification in Human Patients

  • Conference paper
  • First Online:
Complex, Intelligent, and Software Intensive Systems (CISIS 2017)

Abstract

In this paper a new technique for classification of patients affected by Crohn’s disease (CD) is proposed. The proposed technique is based on a Kernel Support Vector Machine (KSVM) and it adopts a Stratified K-Fold Cross-Validation strategy to enhance the KSVM classifier reliability. Traditional manual classification methods require radiological expertise and they usually are very time-consuming. Accordingly to three expert radiologists, a dataset composed of 300 patients has been selected for KSVM training and validation. Each patient was codified by 22 extracted qualitative features and classified as Positive or Negative as the related histological specimen result showed the CD. The effectiveness of the proposed technique has been proved using a real human patient dataset collected at the University of Palermo Policlinico Hospital (UPPH dataset) and composed of 300 patients. The KSVM classification results have been compared against the histological specimen results, which are the adopted Ground-Truth for CD diagnosis. The achieved results (Sensitivity: 94,80%; Specificity: 100,00%; Negative Predictive Value: 95,06%; Precision: 100,00%; Accuracy: 97,40%; Error: 2,60%) show that the proposed technique results are comparable or even better than manual reference methods reported in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maglinte, D.D., Gourtsoyiannis, N., Rex, D., Howard, T.J., Kelvin, F.M.: Classification of small bowel Crohn’s subtypes based on multimodality imaging. Radiol. Clin. North Am. 41(2), 285–303 (2003)

    Article  Google Scholar 

  2. Bhatnagar, G., Stempel, C., Halligan, S., Taylor, S.A.: Utility of MR enterography and ultrasound for the investigation of small bowel CD. J. Magn. Reson. Imaging 45, 1573–1588 (2016)

    Article  Google Scholar 

  3. Lo Re, G., Midiri, M.: Crohn’s Disease: Radiological Features and Clinical-Surgical Correlations. Springer, Heidelberg (2016)

    Book  Google Scholar 

  4. Gomollón, F., Dignass, A., Annese, V., Tilg, H., Van Assche, G., Lindsay, J.O., Peyrin-Biroulet, L., Cullen, G.J., Daperno, M., Kucharzik, T., et al.: 3rd European evidence-based consensus on the diagnosis and management of Crohn’s disease 2016: part 1: diagnosis and medical management. J. Crohns Colitis 11, 3–25 (2016). jjw168

    Article  Google Scholar 

  5. Peloquin, J.M., Pardi, D.S., Sandborn, W.J., Fletcher, J.G., McCollough, C.H., Schueler, B.A., Kofler, J.A., Enders, F.T., Achenbach, S.J., Loftus, E.V.: Diagnostic ionizing radiation exposure in a population-based cohort of patients with inflammatory bowel disease. Am. J. Gastroenterol. 103(8), 2015–2022 (2008)

    Article  Google Scholar 

  6. Sinha, R., Verma, R., Verma, S., Rajesh, A.: Mr enterography of Crohn disease: part 1, rationale, technique, and pitfalls. Am. J. Roentgenol. 197(1), 76–79 (2011)

    Article  Google Scholar 

  7. Panes, J., Bouzas, R., Chaparro, M., García-Sánchez, V., Gisbert, J., Martínez de Guereñu, B., Mendoza, J.L., Paredes, J.M., Quiroga, S., Ripollés, T., et al.: Systematic review: the use of ultrasonography, computed tomography and magnetic resonance imaging for the diagnosis, assessment of activity and abdominal complications of Crohn’s disease. Aliment. Pharmacol. Ther. 34(2), 125–145 (2011)

    Article  Google Scholar 

  8. Steward, M.J., Punwani, S., Proctor, I., Adjei-Gyamfi, Y., Chatterjee, F., Bloom, S., Novelli, M., Halligan, S., Rodriguez-Justo, M., Taylor, S.A.: Non-perforating small bowel CD assessed by MRI enterography: derivation and histopathological validation of an MR-based activity index. Eur. J. Radiol. 81(9), 2080–2088 (2012)

    Article  Google Scholar 

  9. Lo Re, G., Cappello, M., Tudisca, C., Galia, M., Randazzo, C., Craxì, A., Camma, C., Giovagnoni, A., Midiri, M.: CT enterography as a powerful tool for the evaluation of inflammatory activity in Crohn’s disease: relationship of CT findings with CDAI and acute-phase reactants. Radiol. Med. (Torino) 119(9), 658–666 (2014)

    Article  Google Scholar 

  10. Tolan, D.J., Greenhalgh, R., Zealley, I.A., Halligan, S., Taylor, S.A.: Mr enterographic manifestations of small bowel Crohn disease 1. Radiographics 30(2), 367–384 (2010)

    Article  Google Scholar 

  11. Sinha, R., Verma, R., Verma, S., Rajesh, A.: Mr enterography of Crohn disease: part 2, imaging and pathologic findings. Am. J. Roentgenol. 197(1), 80–85 (2011)

    Article  Google Scholar 

  12. Chaplot, S., Patnaik, L., Jagannathan, N.: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed. Signal Process. Control 1(1), 86–92 (2006)

    Article  Google Scholar 

  13. Cocosco, C.A., Zijdenbos, A.P., Evans, A.C.: A fully automatic and robust brain MRI tissue classification method. Med. Image Anal. 7(4), 513–527 (2003)

    Article  Google Scholar 

  14. Agnello, L., Comelli, A., Ardizzone, E., Vitabile, S.: Unsupervised tissue classification of brain MR images for voxel-based morphometry analysis. Int. J. Imaging Syst. Technol. 26(2), 136–150 (2016)

    Article  Google Scholar 

  15. Zhang, Y., Wu, L.: Weights optimization of neural network via improved BCO approach. Prog. Electromagnet. Res. 83, 185–198 (2008)

    Article  Google Scholar 

  16. Comelli, A., Agnello, L., Vitabile, S.: An ontology-based retrieval system for mammographic reports. In: 2015 IEEE Symposium on Computers and Communication (ISCC), pp. 1001–1006. IEEE (2015)

    Google Scholar 

  17. Yeh, J.Y., Fu, J.: A hierarchical genetic algorithm for segmentation of multi-spectral human-brain MRI. Expert Syst. Appl. 34(2), 1285–1295 (2008)

    Article  Google Scholar 

  18. Patil, N., Shelokar, P., Jayaraman, V., Kulkarni, B.: Regression models using pattern search assisted least square support vector machines. Chem. Eng. Res. Des. 83(8), 1030–1037 (2005)

    Article  Google Scholar 

  19. Wang, F.F., Zhang, Y.R.: The support vector machine for dielectric target detection through a wall. Prog. Electromagnet. Res. Lett. 23, 119–128 (2011)

    Article  Google Scholar 

  20. Xu, Y., Guo, Y., Xia, L., Wu, Y.: An support vector regression based nonlinear modeling method for SiC MESFET. Prog. Electromagnet. Res. Lett. 2, 103–114 (2008)

    Article  Google Scholar 

  21. Li, D., Yang, W., Wang, S.: Classification of foreign fibers in cotton lint using machine vision and multi-class support vector machine. Comput. Electron. Agric. 74(2), 274–279 (2010)

    Article  Google Scholar 

  22. Son, Y.J., Kim, H.G., Kim, E.H., Choi, S., Lee, S.K.: Application of support vector machine for prediction of medication adherence in heart failure patients. Healthc. Inform. Res. 16(4), 253–259 (2010)

    Article  Google Scholar 

  23. Zhang, Y., Wang, S., Ji, G., Dong, Z.: An MR brain images classifier system via particle swarm optimization and Kernel support vector machine. Sci. World J. 2013, 9 (2013)

    Google Scholar 

  24. Tagluk, M.E., Akin, M., Sezgin, N.: Classıfıcation of sleep apnea by using wavelet transform and artificial neural networks. Expert Syst. Appl. 37(2), 1600–1607 (2010)

    Article  Google Scholar 

  25. Agnello, L., Comelli, A., Vitabile, S.: Feature dimensionality reduction for mammographic report classification. Springer (2016)

    Google Scholar 

  26. Martiskainen, P., Järvinen, M., Skön, J.P., Tiirikainen, J., Kolehmainen, M., Mononen, J.: Cow behaviour pattern recognition using a three-dimensional accelerometer and support vector machines. Appl. Anim. Behav. Sci. 119(1), 32–38 (2009)

    Article  Google Scholar 

  27. Deris, A.M., Zain, A.M., Sallehuddin, R.: Overview of support vector machine in modeling machining performances. Procedia Eng. 24, 308–312 (2011)

    Article  Google Scholar 

  28. Bermejo, S., Monegal, B., Cabestany, J.: Fish age categorization from otolith images using multi-class support vector machines. Fish. Res. 84(2), 247–253 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Vitabile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Comelli, A. et al. (2018). A Kernel Support Vector Machine Based Technique for Crohn’s Disease Classification in Human Patients. In: Barolli, L., Terzo, O. (eds) Complex, Intelligent, and Software Intensive Systems. CISIS 2017. Advances in Intelligent Systems and Computing, vol 611. Springer, Cham. https://doi.org/10.1007/978-3-319-61566-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61566-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61565-3

  • Online ISBN: 978-3-319-61566-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics