Skip to main content

Genetics of Sedentariness

  • Chapter
  • First Online:
  • 2454 Accesses

Part of the book series: Springer Series on Epidemiology and Public Health ((SSEH))

Abstract

The genetic investigation of sedentary behaviour is only recent and greatly lags behind that of other health behaviours. This section will review the available literature on the genetics of sedentary behaviour. First, the classical twin design will be outlined, and twin studies will be summarized that decompose the variance of sedentary behaviour into genetic and environmental variance. Second, it will be shown how twin studies can contribute to a better understanding of the consequences of sedentary behaviour by explicitly testing causality between this behaviour and health outcomes. Finally, molecular genetic studies will be outlined that aim to find the actual genetic variants that affect sedentary behaviour. We conclude that sedentary behaviour is partly heritable (~30%) but can also be affected by the environment that is shared between siblings. Paucity of studies and heterogeneity in the age ranges studied and measures used make it challenging to provide stable estimates for heritability and environmental influences. To date, no genetic markers have been reliably associated with sedentary behaviour.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    FTO gene: fat mass and obesity-associated gene

  2. 2.

    DRD2 gene: dopamine receptor D2 gene

  3. 3.

    MC4R gene: melanocortin 4 receptor gene

References

  1. Chau JY, Grunseit AC, Chey T, Stamatakis E, Brown WJ, Matthews CE, et al. Daily sitting time and all-cause mortality: a meta-analysis. PLoS One. 2013;8(11):e80000.

    Article  Google Scholar 

  2. Proper KI, Singh AS, van Mechelen W, Chinapaw MJ. Sedentary behaviors and health outcomes among adults: a systematic review of prospective studies. Am J Prev Med. 2011;40(2):174–82.

    Article  Google Scholar 

  3. Thorp AA, Owen N, Neuhaus M, Dunstan DW. Sedentary behaviors and subsequent health outcomes in adults: a systematic review of longitudinal studies, 1996–2011. Am J Prev Med. 2011;41(2):207–15.

    Article  Google Scholar 

  4. Sedentary Behaviour Research N. Letter to the editor: standardized use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metab. 2012;37(3):540–2.

    Article  Google Scholar 

  5. Van der Ploeg HP, Chey T, Ding D, Chau JY, Stamatakis E, Bauman AE. Standing time and all-cause mortality in a large cohort of Australian adults. Prev Med. 2014;69:187–91.

    Article  Google Scholar 

  6. Rhodes RE, Mark RS, Temmel CP. Adult sedentary behavior: a systematic review. Am J Prev Med. 2012;42(3):e3–28.

    Article  Google Scholar 

  7. Cai G, Cole SA, Butte N, Bacino C, Diego V, Tan K, et al. A quantitative trait locus on chromosome 18q for physical activity and dietary intake in Hispanic children. Obesity (Silver Spring). 2006;14(9):1596–604.

    Article  Google Scholar 

  8. Butte NF, Cai G, Cole SA, Comuzzie AG. Viva la Familia study: genetic and environmental contributions to childhood obesity and its comorbidities in the Hispanic population. Am J Clin Nutr. 2006;84(3):646–54. quiz 73–4

    Google Scholar 

  9. Santos DM, Katzmarzyk PT, Diego VP, Blangero J, Souza MC, Freitas DL, et al. Genotype by sex and genotype by age interactions with sedentary behavior: the Portuguese healthy family study. PLoS One. 2014;9(10):e110025.

    Article  Google Scholar 

  10. Diego VP, de Chaves RN, Blangero J, de Souza MC, Santos D, Gomes TN, et al. Sex-specific genetic effects in physical activity: results from a quantitative genetic analysis. BMC Med Genet. 2015;16:58.

    Article  Google Scholar 

  11. Falconer DS, Mackay TF. Introduction to quantitative genetics. 4th ed. Essex: Pearson Education; 1996. 280 p.

    Google Scholar 

  12. Polderman TJ, Benyamin B, de Leeuw CA, Sullivan PF, van Bochoven A, Visscher PM, et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet. 2015;47(7):702–9.

    Article  Google Scholar 

  13. Kujala UM, Kaprio J, Koskenvuo M. Modifiable risk factors as predictors of all-cause mortality: the roles of genetics and childhood environment. Am J Epidemiol. 2002;156(11):985–93.

    Article  Google Scholar 

  14. Nelson MC, Gordon-Larsen P, North KE, Adair LS. Body mass index gain, fast food, and physical activity: effects of shared environments over time. Obesity (Silver Spring). 2006;14(4):701–9.

    Article  Google Scholar 

  15. Fisher A, van Jaarsveld CH, Llewellyn CH, Wardle J. Environmental influences on children’s physical activity: quantitative estimates using a twin design. PLoS One. 2010;5(4):e10110.

    Article  Google Scholar 

  16. Van der Aa N, Bartels M, te Velde SJ, Boomsma DI, de Geus EJ, Brug J. Genetic and environmental influences on individual differences in sedentary behavior during adolescence: a twin-family study. Arch Pediatr Adolesc Med. 2012;166(6):509–14.

    Google Scholar 

  17. Den Hoed M, Brage S, Zhao JH, Westgate K, Nessa A, Ekelund U, et al. Heritability of objectively assessed daily physical activity and sedentary behavior. Am J Clin Nutr. 2013;98(5):1317–25.

    Article  Google Scholar 

  18. Piirtola M, Kaprio J, Ropponen A. A study of sedentary behaviour in the older Finnish twin cohort: a cross sectional analysis. Biomed Res Int. 2014;2014:209140.

    Article  Google Scholar 

  19. Haberstick BC, Zeiger JS, Corley RP. Genetic and environmental influences on the allocation of adolescent leisure time activities. Biomed Res Int. 2014;2014:805476.

    Article  Google Scholar 

  20. De Moor MHM, Boomsma DI, Stubbe JH, Willemsen G, de Geus EJC. Testing causality in the association between regular exercise and symptoms of anxiety and depression. Arch Gen Psychiatry. 2008;65(8):897–905.

    Article  Google Scholar 

  21. Huppertz C, Bartels M, Jansen IE, Boomsma DI, Willemsen G, de Moor MHM, et al. A twin-sibling study on the relationship between exercise attitudes and exercise behavior. Behav Genet. 2014;44(1):45–55.

    Article  Google Scholar 

  22. Smith SM, Davis-Street JE, Fesperman JV, Calkins DS, Bawa M, Macias BR, et al. Evaluation of treadmill exercise in a lower body negative pressure chamber as a countermeasure for weightlessness-induced bone loss: a bed rest study with identical twins. J Bone Miner Res. 2003;18(12):2223–30.

    Article  Google Scholar 

  23. Zwart SR, Hargens AR, Lee SM, Macias BR, Watenpaugh DE, Tse K, et al. Lower body negative pressure treadmill exercise as a countermeasure for bed rest-induced bone loss in female identical twins. Bone. 2007;40(2):529–37.

    Article  Google Scholar 

  24. Ferreira MA. Linkage analysis: principles and methods for the analysis of human quantitative traits. Twin Res. 2004;7(5):513–30.

    Article  Google Scholar 

  25. Simonen RL, Rankinen T, Perusse L, Rice T, Rao DC, Chagnon Y, et al. Genome-wide linkage scan for physical activity levels in the Quebec family study. Med Sci Sports Exerc. 2003;35(8):1355–9.

    Article  Google Scholar 

  26. Klimentidis YC, Arora A, Chougule A, Zhou J, Raichlen DA. FTO association and interaction with time spent sitting. Int J Obes (Lond). 2016;40(3):411–6.

    Article  Google Scholar 

  27. Simonen RL, Rankinen T, Perusse L, Leon AS, Skinner JS, Wilmore JH, et al. A dopamine D2 receptor gene polymorphism and physical activity in two family studies. Physiol Behav. 2003;78(4–5):751–7.

    Article  Google Scholar 

  28. Loos RJ, Rankinen T, Tremblay A, Perusse L, Chagnon Y, Bouchard C. Melanocortin-4 receptor gene and physical activity in the Quebec family study. Int J Obes (Lond). 2005;29(4):420–8.

    Article  Google Scholar 

  29. Tabor HK, Risch NJ, Myers RM. Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet. 2002;3(5):391–7.

    Article  Google Scholar 

  30. Pearson TA, Manolio TA. How to interpret a genome-wide association study. JAMA. 2008;299(11):1335–44.

    Article  Google Scholar 

  31. Van Dongen J, Slagboom PE, Draisma HH, Martin NG, Boomsma DI. The continuing value of twin studies in the omics era. Nat Rev Genet. 2012;13(9):640–53.

    Article  Google Scholar 

  32. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89–98.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Huppertz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Huppertz, C., de Geus, E.J.C., van der Ploeg, H.P. (2018). Genetics of Sedentariness. In: Leitzmann, M., Jochem, C., Schmid, D. (eds) Sedentary Behaviour Epidemiology. Springer Series on Epidemiology and Public Health. Springer, Cham. https://doi.org/10.1007/978-3-319-61552-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61552-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61550-9

  • Online ISBN: 978-3-319-61552-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics