Skip to main content

Measurement of Sedentary Behaviour in Population Studies

  • Chapter
  • First Online:
Sedentary Behaviour Epidemiology

Abstract

Measurement of sedentary behaviours in surveillance systems and in population studies involves the use of subjective and objective methods. Subjective methods have traditionally included questionnaires to provide a snapshot of sedentary behaviours and to quantify the time spent in sedentary behaviours as categorized by energy expenditure and posture. New horizons for subjective methodologies include smartphone applications that allow measurement of the facets and sub-categories of the Consensus Taxonomy of Sedentary Behaviours. Objective methods have used pedometers to determine the proportion of the populations with <5000 steps/day as defined by the Step-defined Sedentary Behaviour Index and accelerometers to determine the time spent in sedentary behaviours defined as <100 acceleration counts per minute. New horizons for objective methodologies include integrated motion- and posture sensors to assess time spent in metabolic intensities ≤1.5 metabolic equivalents (METs) and sitting or reclining postures. Innovative ways to score accelerometer outputs to allow pattern recognition of types of sedentary behaviours also are on the horizon. Selection of a sedentary measurement method should include considerations of the validity, reliability, and responsiveness of a method to reduce measurement error. Methods also should be selected that allow evaluation of Hill’s Criteria for Causality to advance the understanding of the effects of sedentary behaviours on health outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lucas RM, McMichael AJ. Association or causation: evaluating links between “environment and disease”. Bull World Health Organ. 2005;83(10):792–5.

    Google Scholar 

  2. Terwee CB, Mokkink LB, van Poppel MNM, Chinapaw MJM, van Mechelen W, de Vet HCW. Qualitative attributes and measurement properties of physical activity questionnaires: a checklist. Sports Med. 2010;40(7):525–37.

    Article  Google Scholar 

  3. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR Jr, Tudor-Locke C, Greer JL, Vezina J, Whitt-Glover MC, Leon AS. 2011 Compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575–81.

    Article  Google Scholar 

  4. Hu FB, Li TY, Colditz GA, Willett WC, Manson JE. Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. JAMA. 2003;289(14):1785–91.

    Article  Google Scholar 

  5. Chastin SFM, Schwarz U. Skelton development of a consensus taxonomy of sedentary behaviors (SIT): report of Delphi Round 1. PLoS One. 2013;8(12):e82313.

    Article  Google Scholar 

  6. European Commission. Special Eurobarometer 412 sport and physical activity. Sleep Breath. 2014;18(1):133–6.

    Article  Google Scholar 

  7. European Commission. Eurobarometer on sport and physical activity. Brussels; 2014. http://europa.eu/rapid/press-release_MEMO-14-207_en.htm. Accessed May 5 2016.

  8. Ford E, Schulze MB, Kroger J, Pischon T, Bergmann MM, Boeing H. Television watching and incident diabetes: findings from the European prospective investigation into cancer and nutrition – potsdam study. J Diabetes. 2010;2:23–7.

    Article  Google Scholar 

  9. Deforche B, Van Dyck D, Deliens T, De Bourdeaudhuij I. Changes in weight, physical activity, sedentary behaviour and dietary intake during the transition to higher education: a prospective study. Int J Behav Nutr Phys Act. 2015;12:16.

    Article  Google Scholar 

  10. Busschaert C, De Bourdeaudhuij I, Van Cauwenberg J, Cardon G, De Cocker K. Intrapersonal, social-cognitive and physical environmental variables related to context-specific sitting time in adults: a one-year follow-up study. Int J Behav Nutr Phys Act. 2016;13(1):28.

    Article  Google Scholar 

  11. Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A, Sallis JF, Oja P. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381–95.

    Article  Google Scholar 

  12. Rosenberg DE, Bull FC, Marshall AL, Sallis JF, Bauman AE. Assessment of sedentary behavior with the International Physical Activity Questionnaire. J Phys Activ Health. 2008;5(1 (Suppl.)):S30–44.

    Article  Google Scholar 

  13. Clark BK, Thorp AA, Winkler EA, Gardiner PA, Healy GN, Owen N, Dunstan DW. Validity of self-reported measures of workplace sitting time and breaks in sitting time. Med Sci Sports Exerc. 2011;43(10):1907–0912.

    Google Scholar 

  14. Gardiner PA, Healy GN, Eakin EG, Clark BK, Dunstan DW, Shaw JE, Zimmet PZ, Owen N. Associations between television viewing time and overall sitting time with the metabolic syndrome in older men and women: the Australian Diabetes, Obesity and Lifestyle study. J Am Geriatr Soc. 2011;59(5):788–96.

    Article  Google Scholar 

  15. Clark BK, Winkler E, Healy GN, Gardiner PG, Dunstan DW, Owen N, Reeves MM. Adults’ past-day recall of sedentary time: reliability, validity, and responsiveness. Med Sci Sports Exerc. 2013;45(6):1198–207.

    Article  Google Scholar 

  16. Rosenberg DE, Norman GJ, Wagner N, Patrick K, Calfas KJ, Sallis JF. Reliability and validity of the Sedentary Behavior Questionnaire (SBQ) for adults. J Phys Act Health. 2010;7:697–705.

    Article  Google Scholar 

  17. Neilson HK, Ullman R, Robson PJ, Friedenreich CM, Csizmadi I. Cognitive testing of the STAR-Q: insights in activity and sedentary time reporting. J Phys Act Health. 2013;10(3):379–89.

    Article  Google Scholar 

  18. Whitfield GP, Pettee Gabriel KK, Kohl HW. Assessing sitting across contexts: development of the multi-context sitting time questionnaire. Res Q Exerc Sport. 2013;84(3):323–8.

    Article  Google Scholar 

  19. Golubic R, May AM, Benjaminsen Borch K, Overvad K, Charles MA, Diaz MJ, et al. Validity of electronically administered Recent Physical Activity Questionnaire (RPAQ) in ten European countries. PLoS One. 2014;9(3):e92829.

    Article  Google Scholar 

  20. Besson H, Brage S, Jakes RW, Ekelund U, Wareham NJ. Estimating physical activity energy expenditure, sedentary time, and physical activity intensity by self-report in adults. Am J Clin Nutr. 2010;91(1):106–14.

    Article  Google Scholar 

  21. Wijndaele K, DE Bourdeaudhuij I, Godino JG, Lynch BM, Griffin SJ, Westgate K, Brage S. Reliability and validity of a domain-specific last 7-d sedentary time questionnaire. Med Sci Sports Exerc. 2014;46(6):1248–60.

    Article  Google Scholar 

  22. Van Cauwenberg J, Van Holle V, De Bourdeaudhuij I, Owen N, Deforche B. Older adults’ reporting of specific sedentary behaviors: validity and reliability. BMC Public Health. 2014;14(1):734.

    Article  Google Scholar 

  23. Scholes S, Bridges S, Ng Fat L, Mindell JS. Comparison of the physical activity and sedentary behaviour assessment questionnaire and the short-form international physical activity questionnaire: an analysis of health survey for England data. PLoS One. 2016;11(3):e0151647.

    Article  Google Scholar 

  24. Atkin AJ, Gorely T, Clemes SA, Yates T, Edwardson C, Brage S, Salmon J, Marshall SJ, Biddle SJ. Methods of measurement in epidemiology: sedentary behaviour. Int J Epidemiol. 2012;41(5):1560–471.

    Article  Google Scholar 

  25. Chang E-T, Yang M-C, Wang H-M, Lai H-L. Snoring in a sitting position and neck circumference are predictors of sleep apnea in Chinese patients. Sleep Breath. 2014;18(1):133–1316.

    Article  Google Scholar 

  26. Ainsworth BE, Caspersen CJ, Matthews CE, Masse LC, Baranowski T, Zhu W. Recommendation to improve the accuracy of estimates of physical activity derived from self report. J Phys Act Health. 2012;9(1):S76–84.

    Article  Google Scholar 

  27. Ainsworth BE, Pregonero AF, Rivière F. Assessing sedentary behavior using questionnaires. In: Zhu W, Owen N, editors. Sedentary Behavior and Health Concepts, Assessment and intervention. 2017: 165–174, 386–388. Champaign, IL: Human Kinetics.

    Google Scholar 

  28. Ainsworth BEHW, Herrmann SD, Meckes N, Bassett DR Jr, Tudor-Locke C, Greer JL, Vezina J, Whitt-Glover MC, Leon AS. The compendium of physical activities tracking guide: School of Nutrition and Health Promotion, Arizona State University; 2011. https://sites.google.com/site/compendiumofphysicalactivities/. Accessed May 10 2016

  29. Chen KY, Bassett DR Jr. The technology of accelerometry-based activity monitors: current and future. Med Sci Sports Exerc. 2015;37(11 (Suppl)):S490–500.

    Google Scholar 

  30. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8.

    Article  Google Scholar 

  31. Katzmarzyk PT, Barreira TV, Broyles ST, Champagne CM, Chaput JP, Fogelholm M, et al. The International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE): design and methods. BMC Public Health. 2013;13:900.

    Article  Google Scholar 

  32. Hagströmer M, Kwak L, Oja P, Sjöström M. A 6 year longitudinal study of accelerometer-measured physical activity and sedentary time in Swedish adults. J Sci Med Sport. 2015;18(5):553–7.

    Article  Google Scholar 

  33. Lee I-MSE. Using accelerometers to measure physical activity in large-scale epidemiological studies: issues and challenges. Br J Sport Med. 2014;48(3):197–201.

    Article  Google Scholar 

  34. Shiroma EJ, Cook NR, Manson JE, Buring JE, Rimm EB, Lee IM. Comparison of self-reported and accelerometer-assessed physical activity in older women. PLoS One. 2015;10(12):e0145950.

    Article  Google Scholar 

  35. Zhu W, Howard VJ, Wadley VG, Hutto B, Blair SN, Vena JE, Colabianchi N, Rhodes D, Hooker SP. Association between objectively measured physical activity and cognitive function in older adults – the reasons for geographic and racial differences in stroke study. J Am Geriatr Soc. 2015;63(12):2447–54.

    Article  Google Scholar 

  36. Griffiths LJ, Sera F, Cortina-Borja M, Law C, Ness A, Dezateux C. Objectively measured physical activity and sedentary time: cross-sectional and prospective associations with adiposity in the Millennium Cohort Study. BMJ Open. 2016;6(4):e010366.

    Article  Google Scholar 

  37. Gao L, Bourke AK, Nelson J. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems. Med Eng Phys. 2014;36(6):779–85.

    Article  Google Scholar 

  38. Bassett DR, John D, Conger SA, Rider BC, Passmore RM, Clark JM. Detection of lying down, sitting, standing, and stepping using two activPAL monitor. Med Sci Sports Exerc. 2014;46(10):2025–9.

    Article  Google Scholar 

  39. Leask CF, Harvey JA, Skelton DA, Chastin SF. Exploring the context of sedentary behaviour in older adults (what, where, why, when and with whom). Eur Rev Aging Phys Act. 2015;12(1):1–8.

    Article  Google Scholar 

  40. Matthews CE, Hagströmer M, Pober DM, Bowles HR. Best practices for using physical activity monitors in population-based research. Med Sci Sports Exerc. 2012;44(1 (Suppl 1)):S68–76.

    Article  Google Scholar 

  41. Craig CLCC, Griffiths JM, Tudor-Locke C. Descriptive epidemiology of youth pedometer-determined physical activity: CANPLAY. Med Sci Sports Exerc. 2010;42(9):1639–43.

    Article  Google Scholar 

  42. Craig CL, Cameron C, Tudor-Locke C. CANPLAY pedometer normative reference data for 21,271 children and 12,956 adolescents. Med Sci Sports Exerc. 2013;45(1):123–9.

    Article  Google Scholar 

  43. Cameron C, Craig CL, Bauman A, Tudor-Locke C. CANPLAY study: secular trends in steps/day amongst 5-19 year-old Canadians between 2005 and 2014. Prev Med. 2016;86:28–33.

    Article  Google Scholar 

  44. Hirvensalo M, Telama R, Schmidt MD, Tammelin TH, Yang X, Magnussen CG, Vkari JS, Raitakari OT. Daily steps among Finnish adults: variation by age, sex, and socioeconomic position. Scand J Public Health. 2011;39(7):669–77.

    Article  Google Scholar 

  45. Inoue S, Ohya Y, Tudor-Locke C, Tanaka S, Yoshiike N, Shimomitsu T. Time trends for step-determined physical activity among Japanese adults. Med Sci Sports Exerc. 2011;43(10):1913–9.

    Article  Google Scholar 

  46. Schneider PL, Crouter S, Bassett DR Jr. Pedometer measures of free-living physical activity: comparison of 13 models. Med Sci Sports Exerc. 2004;36(2):331–5.

    Article  Google Scholar 

  47. Steeves JA, Tyo BM, Connolly CP, Gregory DA, Stark NA, Bassett DR Jr. Validity and reliability of the Omron HJ-303 tri-axial accelerometer-based pedometer. J Phys Act Health. 2011;8(7):1014–20.

    Article  Google Scholar 

  48. Bergman RJ, Bassett DR Jr, Muthukrishnan S, Klein DA. Validity of 2 devices for measuring steps taken by older adults in assisted-living facilities. J Phys Act Health. 2008;5(Suppl 1):166–75.

    Article  Google Scholar 

  49. Nakae S, Oshima Y, Ishii K. Accuracy of spring-levered and piezo-electric pedometers in primary school Japanese children. J Physiol Anthropol. 2008;27(5):233–9.

    Article  Google Scholar 

  50. Nelson MB, Kaminsky LA, Dickin DC, Montoye AH. Validity of consumer-based physical activity monitors for specific activity types. Med Sci Sports Exerc. 2016;48(8):1619–28.

    Article  Google Scholar 

  51. Tudor-Locke C, Bassett DR Jr. How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med. 2004;34(1):1–8.

    Article  Google Scholar 

  52. Tudor-Locke C, Hatano Y, Pangrazi RP, Kang M. Revisiting “How many steps are enough?”. Med Sci Sports Exerc. 2008;40(7 (Suppl)):S537–S43.

    Article  Google Scholar 

  53. Tudor-Locke C, Craig CL, Beets MW, Belton S, Cardon GM, Duncan S, Hatano Y, Lubans DR, Olds TS, Raustorp A, Rowe DA, Spence JC, Tanaka S, Blair SN. How many steps/day are enough? For children and adolescents. Int J Behav Nutr Phys Act. 2011;8:78.

    Article  Google Scholar 

  54. Tudor-Locke C, Bell RC, Myers AM, Harris SB, Lauzon N, Rodger NW. Pedometer-determined ambulatory activity in individuals with type 2 diabetes. Diabetes Res Clin Pr. 2002;55(3):191–9.

    Article  Google Scholar 

  55. Tudor-Locke C, Pangrazi RP, Corbin CB, Rutherford WJ, Vincent SD, Raustorp A, Tomson LM, Cuddihy TF. BMI-referenced standards for recommended pedometer-determined steps/day in children. Prev Med. 2004;38(6):857–64.

    Article  Google Scholar 

  56. Tudor-Locke C, Bassett DR Jr, Rutherford WJ, Ainsworth BE, Chan CB, Croteau K, Giles-Corti B, Le Masurier G, Moreau K, Mrozek J, Oppert JM, Raustorp A, Strath SJ, Thompson D, Whitt-Glover MC, Wilde B, Wojcik JR. BMI-referenced cut points for pedometer-determined steps per day in adults. J Phys Act Health. 2008;5(1 Suppl):S126–S39.

    Article  Google Scholar 

  57. Tudor-Locke C, Craig CL, Thyfault JP, Spence JC. A step-defined sedentary lifestyle index: <5000 steps/day. Appl Physiol Nutr Metab. 2013;38:100–14.

    Article  Google Scholar 

  58. Crouter SE, Clowers KG, Bassett DR Jr. A novel method for using accelerometer data to predict energy expenditure. J Appl Physiol. 2006;100(4):1324–31.

    Article  Google Scholar 

  59. Crouter SE, Kuffel E, Haas JD, Frongillo EA, Bassett DR Jr. Refined two-regression model for the ActiGraph accelerometer. Med Sci Sports Exerc. 2010;42(5):1029–37.

    Article  Google Scholar 

  60. Esliger DW, Rowlands AV, Hurst TL, Catt M, Murray P, Eston RG. Validation of the GENEA accelerometer. Med Sci Sports Exerc. 2011;43(6):1085–93.

    Article  Google Scholar 

  61. Matthews CE, Chen KY, Freedson PS, Buchowski MS, Beech BM, Pate RR, Troiano RP. Amount of time spent in sedentary behaviors in the United States, 2003-2004. Am J Epidemiol. 2008;167(7):875–81.

    Article  Google Scholar 

  62. Kozey-Keadle S, Libertine A, Lyden K, Staudenmayer J, Freedson PS. Validation of wearable monitors for assessing sedentary behavior. Med Sci Sports Exerc. 2011;43(8):1561–7.

    Article  Google Scholar 

  63. Silva P, Aires L, Santos RM, Vale S, Welk G, Mota J. Lifespan snapshot of physical activity assessed by accelerometry in Porto. J Phys Act Health. 2011;8(3):352–60.

    Article  Google Scholar 

  64. Healy GN, Clark BK, Winkler EA, Gardiner PA, Brown WJ, Matthews CE. Measurement of adults’ sedentary time in population-based studies. Am J Prev Med. 2011;41(2):216–27.

    Article  Google Scholar 

  65. Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc. 2011;43(2):357–64.

    Article  Google Scholar 

  66. Troiano RP, McClain JJ, Brychta RJ, Chen KY. Evolution of accelerometer methods for physical activity research. Brit J Sport Med. 2014;48(13):1019–23.

    Article  Google Scholar 

  67. Bankoski A, Harris TB, McClain JJ, Brychta RJ, Caserotti P, Chen KY, Berrigan D, Troiano RP, Koster A. Sedentary activity associated with metabolic syndrome independent of physical activity. Diabetes Care. 2011;34(2):497–503.

    Article  Google Scholar 

  68. Manns P, Ezeugwu V, Armijo-Olivo S, Vallance J, Healy GN. Accelerometer-derived pattern of sedentary and physical activity time in persons with mobility disability: national health and nutrition examination survey 2003 to 2006. J Am Geriatr Soc. 2015;63(7):1314–23.

    Article  Google Scholar 

  69. Loprinzi PD, Gilham B, Cardinal BJ. Association between accelerometer-assessed physical activity and objectively measured hearing sensitivity among U.S. adults with diabetes. Res Q Exerc Sport. 2014;85(3):390–7.

    Article  Google Scholar 

  70. Vallance JK, Buman MP, Stevinson C, Lynch BM. Associations of overall sedentary time and screen time with sleep outcomes. Am J Health Behav. 2015;39(1):62–7.

    Article  Google Scholar 

  71. Loprinzi PD, Abbott K. Association of diabetic peripheral arterial disease and objectively-measured physical activity: NHANES 2003-2004. J Diabetes Metab Disord. 2014;13:63.

    Article  Google Scholar 

  72. Van Dyck D, Cerin E, De Bourdeaudhuij I, Hinckson E, Reis RS, Davey R, Sarmiento OL, Mitas J, Troelsen J, MacFarlane D, Salvo D, Aguinaga-Ontoso I, Owen N, Cain KL, Sallis JF. International study of objectively-measured physical activity and sedentary time with body mass index and obesity: IPEN adult study. Int J Obes. 2015;39(2):199–207.

    Article  Google Scholar 

  73. Evenson KR, Wen F, Herring AH, Di C, LaMonte MJ, Fels-Tinker L, Lee I-M, Rillamas-Sun E, LaCroix AZ, Buchner DM. Calibrating physical activity intensity for hip-worn accelerometry in women age 60 to 91 years: The Women’s Health Initiative OPACH Calibration Study. Pre Med Rep. 2015;2:750–6.

    Article  Google Scholar 

  74. Jefferis BJ, Sartini C, Shiroma E, Whincup PH, Wannamethee SG, Lee IM. Duration and breaks in sedentary behaviour: accelerometer data from 1566 community-dwelling older men (British Regional Heart Study). Brit J Sport Med. 2015;49(24):1591–4.

    Article  Google Scholar 

  75. Lyden K, Kozey Keadle SL, Staudenmayer JW, Freedson PS. Validity of two wearable monitors to estimate breaks from sedentary time. Med Sci Sports Exerc. 2012;44(11):2243–52.

    Article  Google Scholar 

  76. Rowlands AV, Olds TS, Hillsdon M, Pulsford R, Hurst TL, Eston RG, Gomersall SR, Johnston K, Langford J. Assessing sedentary behavior with the GENEActiv: introducing the sedentary sphere. Med Sci Sports Exerc. 2014;46(6):1235–47.

    Article  Google Scholar 

  77. Rowlands AV, Yates T, Olds TS, Davies M, Khunti K, Edwardson CL. Sedentary sphere: wrist-worn accelerometer-brand independent posture classification. Med Sci Sports Exerc. 2016;48(4):748–54.

    Article  Google Scholar 

  78. Staudenmayer J, Zhu W, Catellier DJ. Statistical considerations in the analysis of accelerometry-based activity monitor data. Med Sci Sports Exerc. 2012;44(1 (Suppl. 1)):561–7.

    Google Scholar 

  79. Mannini A, Sabatini AM. Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors. 2010;10(2):1154–75.

    Article  Google Scholar 

  80. Ravi N, Dandekar N, Mysore P, Littman ML. Activity recognition from accelerometer data. Assoc Adv Artif Intell. 2005;5:1541–6.

    Google Scholar 

  81. Fairclough SJ, Noonan R, Rowlands AV, VAN Hees V, Knowles Z, Boddy LM. Wear compliance and activity in children wearing wrist- and hip-mounted accelerometers. Med Sci Sports Exerc. 2016;48(2):245–53.

    Article  Google Scholar 

  82. Welk GJ, McClain J, Ainsworth BE. Protocols for evaluating equivalency of accelerometry-based activity monitors. Med Sci Sports Exerc. 2012;44(1 Suppl):S39–49.

    Article  Google Scholar 

  83. Sedentary Behaviour Research Network. Standardized use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metab. 2012;37:540–2.

    Article  Google Scholar 

  84. Dunton GF, Dzubur E, Kawabata K, Yanez B, Bo B, Intille S. Development of a smartphone application to measure physical activity using sensor-assisted self-report. Front Public Health. 2014;2:12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Ainsworth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Ainsworth, B., Rivière, F., Florez-Pregonero, A. (2018). Measurement of Sedentary Behaviour in Population Studies. In: Leitzmann, M., Jochem, C., Schmid, D. (eds) Sedentary Behaviour Epidemiology. Springer Series on Epidemiology and Public Health. Springer, Cham. https://doi.org/10.1007/978-3-319-61552-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61552-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61550-9

  • Online ISBN: 978-3-319-61552-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics