Skip to main content

Sedentary Behaviour and Mortality

  • Chapter
  • First Online:
Sedentary Behaviour Epidemiology

Part of the book series: Springer Series on Epidemiology and Public Health ((SSEH))

  • 2577 Accesses

Abstract

Throughout the past century, non-communicable diseases have formed the leading cause of death worldwide, accounting for 68% of all deaths globally in 2012. In recent decades, the increase in non-communicable disease has coincided with a decrease in daily energy expenditure due to the advent of time- and labour-saving technologies (particularly in the occupational and domestic settings) that have fostered an environment conducive to extended periods of sitting. Indeed, prolonged sitting is now ubiquitous in modern society, and an expanding body of literature shows a consistent association between time spent in sedentary behaviours and an increased risk of mortality. The evidence base linking prolonged sitting with premature mortality is convincing and has led to the inclusion of government public health guidelines around reducing prolonged sitting in several countries. However, more needs to be done to inform specific public recommendations on how often sitting should be interrupted and whether these interruptions need to include some form of activity to provide maximum benefits. Within an overarching view, these recommendations could be used as a catalyst towards more active living in the general population, where the deleterious effects of prolonged sedentary behaviour are viewed separately to, not as the opposite in a continuum of physical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    AMPK: adenosine monophosphate-activated protein kinase

References

  1. Finch CE. Evolution in health and medicine Sackler colloquium: evolution of the human lifespan and diseases of aging: roles of infection, inflammation, and nutrition. Proc Natl Acad Sci U S A. 2010;107(Suppl 1):1718–24.

    Article  Google Scholar 

  2. Jones DS, Podolsky SH, Greene JA. The burden of disease and the changing task of medicine. N Engl J Med. 2012;366(25):2333–8.

    Article  Google Scholar 

  3. CDC. Achievements in Public Health, 1900–1999: Control of Infectious Diseases. MMWR Weekly. 1999;48(29):621–9.

    Google Scholar 

  4. Ausubel JH, Meyer PS, Wernick IK. Death and the human environment: the United States in the 20th century. Technol Society. 2001;23:131–46.

    Article  Google Scholar 

  5. Olshansky SJ. Has the rate of human aging already been modified? Cold Spring Harb Perspect Med. 2015;5(12):a025965.

    Article  Google Scholar 

  6. World Health Organisation. Fact sheet: noncommunicable diseases. 2015. http://www.who.int/mediacentre/factsheets/fs355/en/#content. Accessed 12 Jan 2016.

  7. World Health Organisation. Fact sheet: the top 10 causes of death. http://www.who.int/mediacentre/factsheets/fs310/en/index2.html#content. Accessed 12 Jan 2016.

  8. World Health Organisation. Health statistics and information systems: projections of mortality and causes of death, 2015 and 2030. http://www.who.int/healthinfo/global_burden_disease/projections/en/#content. Accessed 12 Jan 2016.

  9. World Health Organisation. Global Health Observatory data: life expectancy. http://www.who.int/gho/mortality_burden_disease/life_tables/situation_trends_text/en/#content. Accessed 12 Jan 2016.

  10. World Health Organisation. Fact sheet: antimicrobial resistance. http://www.who.int/mediacentre/factsheets/fs194/en/#content. Accessed 12 Jan 2016.

  11. Owen N, Healy GN, Matthews CE, Dunstan DW. Too much sitting: the population health science of sedentary behavior. Exerc Sport Sci Rev. 2010;38(3):105–13.

    Article  Google Scholar 

  12. Ng SW, Popkin BM. Time use and physical activity: a shift away from movement across the globe. Obes Rev. 2012;13(8):659–80.

    Article  Google Scholar 

  13. Dunstan DW, Howard B, Healy GN, Owen N. Too much sitting–a health hazard. Diabetes Res Clin Pract. 2012;97(3):368–76.

    Article  Google Scholar 

  14. Manley AF. Physical activity and health: a report of the surgeon general. Atlanta, GA: Diane Publishing Co.; 1996.

    Google Scholar 

  15. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation. 2007;116(9):1081–93.

    Article  Google Scholar 

  16. Katzmarzyk PT. Physical activity, sedentary behavior, and health: paradigm paralysis or paradigm shift? Diabetes. 2010;59(11):2717–25.

    Article  Google Scholar 

  17. Gill JM, Cooper AR. Physical activity and prevention of type 2 diabetes mellitus. Sports Med. 2008;38(10):807–24.

    Article  Google Scholar 

  18. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.

    Article  Google Scholar 

  19. Thompson PD. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease. Arterioscler Thromb Vasc Biol. 2003;23(8):1319–21.

    Article  Google Scholar 

  20. Lollgen H, Bockenhoff A, Knapp G. Physical activity and all-cause mortality: an updated meta-analysis with different intensity categories. Int J Sports Med. 2009;30(3):213–24.

    Article  Google Scholar 

  21. Paffenbarger RS Jr, Hyde RT, Wing AL, Hsieh CC. Physical activity, all-cause mortality, and longevity of college alumni. N Engl J Med. 1986;314(10):605–13.

    Article  Google Scholar 

  22. Blair SN, Kohl HW III, Paffenbarger RS Jr, Clark DG, Cooper KH, Gibbons LW. Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA. 1989;262(17):2395–401.

    Article  Google Scholar 

  23. Matthews CE, George SM, Moore SC, Bowles HR, Blair A, Park Y, et al. Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. Am J Clin Nutr. 2012;95(2):437–45.

    Article  Google Scholar 

  24. Ekelund U, Steene-Johannessen J, Brown WJ, Fagerland MW, Owen N, Powell KE, et al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet. 2016;388(10051):1302–10.

    Article  Google Scholar 

  25. Hamilton MT, Hamilton DG, Zderic TW. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes. 2007;56(11):2655–67.

    Article  Google Scholar 

  26. Dong L, Block G, Mandel S. Activities contributing to total energy expenditure in the United States: results from the NHAPS study. Int J Behav Nutr Phys Act. 2004;1(1):4.

    Article  Google Scholar 

  27. Clark BK, Sugiyama T, Healy GN, Salmon J, Dunstan DW, Owen N. Validity and reliability of measures of television viewing time and other non-occupational sedentary behaviour of adults: a review. Obes Rev. 2009;10(1):7–16.

    Article  Google Scholar 

  28. Morris JN, Heady JA, Raffle PA, Roberts CG, Parks JW. Coronary heart-disease and physical activity of work. Lancet. 1953;265(6795):1053–7; contd.

    Google Scholar 

  29. Chau JY, Grunseit A, Midthjell K, Holmen J, Holmen TL, Bauman AE, et al. Sedentary behaviour and risk of mortality from all-causes and cardiometabolic diseases in adults: evidence from the HUNT3 population cohort. Br J Sports Med. 2015;49(11):737–42.

    Article  Google Scholar 

  30. Chau JY, Grunseit AC, Chey T, Stamatakis E, Brown WJ, Matthews CE, et al. Daily sitting time and all-cause mortality: a meta-analysis. PLoS One. 2013;8(11):e80000.

    Article  Google Scholar 

  31. Kim Y, Wilkens LR, Park SY, Goodman MT, Monroe KR, Kolonel LN. Association between various sedentary behaviours and all-cause, cardiovascular disease and cancer mortality: the Multiethnic Cohort Study. Int J Epidemiol. 2013;42(4):1040–56.

    Article  Google Scholar 

  32. Grontved A, Hu FB. Television viewing and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: a meta-analysis. JAMA. 2011;305(23):2448–55.

    Article  Google Scholar 

  33. Baigorri A. Time use at different stages of life: results from 13 European countries. Luxembourg: Eurostat; 2003.

    Google Scholar 

  34. Australian Bureau of Statistics. How Australians use their time, 2006. 2008. http://www.abs.gov.au/ausstats/ABS@.nsf/Latestproducts/4153.0Main%20Features22006. Accessed 12 Jan 2016.

  35. Nielsen. State of the Media: TV usage trends Q3 and Q4. 2010. http://www.nielsen.com/us/en/insights/reports/2011/state-of-the-media-tv-usage-trends-q3-and-q4-2010.html. Accessed 12 Jan 2016.

  36. Wijndaele K, Brage S, Besson H, Khaw KT, Sharp SJ, Luben R, et al. Television viewing time independently predicts all-cause and cardiovascular mortality: the EPIC Norfolk study. Int J Epidemiol. 2011;40(1):150–9.

    Article  Google Scholar 

  37. Dunstan DW, Barr EL, Healy GN, Salmon J, Shaw JE, Balkau B, et al. Television viewing time and mortality: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Circulation. 2010;121(3):384–91.

    Article  Google Scholar 

  38. Warren TY, Barry V, Hooker SP, Sui X, Church TS, Blair SN. Sedentary behaviors increase risk of cardiovascular disease mortality in men. Med Sci Sports Exerc. 2010;42(5):879–85.

    Article  Google Scholar 

  39. Keadle SK, Moore SC, Sampson JN, Xiao Q, Albanes D, Matthews CE. Causes of death associated with prolonged TV viewing: NIH-AARP diet and health study. Am J Prev Med. 2015;49(6):811–21.

    Article  Google Scholar 

  40. Stamatakis E, Hamer M, Dunstan DW. Screen-based entertainment time, all-cause mortality, and cardiovascular events: population-based study with ongoing mortality and hospital events follow-up. J Am Coll Cardiol. 2011;57(3):292–9.

    Article  Google Scholar 

  41. Ford ES. Combined television viewing and computer use and mortality from all-causes and diseases of the circulatory system among adults in the United States. BMC Public Health. 2012;12:70.

    Article  Google Scholar 

  42. Patel AV, Bernstein L, Deka A, Feigelson HS, Campbell PT, Gapstur SM, et al. Leisure time spent sitting in relation to total mortality in a prospective cohort of US adults. Am J Epidemiol. 2010;172(4):419–29.

    Article  Google Scholar 

  43. Campbell PT, Patel AV, Newton CC, Jacobs EJ, Gapstur SM. Associations of recreational physical activity and leisure time spent sitting with colorectal cancer survival. J Clin Oncol. 2013;31(7):876–85.

    Article  Google Scholar 

  44. Inoue M, Iso H, Yamamoto S, Kurahashi N, Iwasaki M, Sasazuki S, et al. Daily total physical activity level and premature death in men and women: results from a large-scale population-based cohort study in Japan (JPHC study). Ann Epidemiol. 2008;18(7):522–30.

    Article  Google Scholar 

  45. Katzmarzyk PT, Church TS, Craig CL, Bouchard C. Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med Sci Sports Exerc. 2009;41(5):998–1005.

    Article  Google Scholar 

  46. Van der Ploeg HP, Chey T, Korda RJ, Banks E, Bauman A. Sitting time and all-cause mortality risk in 222 497 Australian adults. Arch Intern Med. 2012;172(6):494–500.

    Article  Google Scholar 

  47. Seguin R, Buchner DM, Liu J, Allison M, Manini T, Wang CY, et al. Sedentary behavior and mortality in older women: the Women’s health initiative. Am J Prev Med. 2014;46(2):122–35.

    Article  Google Scholar 

  48. Pavey TG, Peeters GG, Brown WJ. Sitting-time and 9-year all-cause mortality in older women. Br J Sports Med. 2015;49(2):95–9.

    Article  Google Scholar 

  49. Koster A, Caserotti P, Patel KV, Matthews CE, Berrigan D, Van Domelen DR, et al. Association of sedentary time with mortality independent of moderate to vigorous physical activity. PLoS One. 2012;7(6):e37696.

    Article  Google Scholar 

  50. Leon-Munoz LM, Martinez-Gomez D, Balboa-Castillo T, Lopez-Garcia E, Guallar-Castillon P, Rodriguez-Artalejo F. Continued sedentariness, change in sitting time, and mortality in older adults. Med Sci Sports Exerc. 2013;45(8):1501–7.

    Article  Google Scholar 

  51. Thorp AA, McNaughton SA, Owen N, Dunstan DW. Independent and joint associations of TV viewing time and snack food consumption with the metabolic syndrome and its components; a cross-sectional study in Australian adults. Int J Behav Nutr Phys Act. 2013;10:96.

    Article  Google Scholar 

  52. Wilmot EG, Edwardson CL, Achana FA, Davies MJ, Gorely T, Gray LJ, et al. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia. 2012;55(11):2895–905.

    Article  Google Scholar 

  53. Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med. 2015;162(2):123–32.

    Article  Google Scholar 

  54. Ford ES, Caspersen CJ. Sedentary behaviour and cardiovascular disease: a review of prospective studies. Int J Epidemiol. 2012;41(5):1338–53.

    Article  Google Scholar 

  55. De Rezende LF, Rodrigues Lopes M, Rey-Lopez JP, Matsudo VK, Luiz OC. Sedentary behavior and health outcomes: an overview of systematic reviews. PLoS One. 2014;9(8):e105620.

    Article  Google Scholar 

  56. Sugiyama T, Healy GN, Dunstan DW, Salmon J, Owen N. Is television viewing time a marker of a broader pattern of sedentary behavior? Ann Behav Med. 2008;35(2):245–50.

    Article  Google Scholar 

  57. Matthews CE, Chen KY, Freedson PS, Buchowski MS, Beech BM, Pate RR, et al. Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am J Epidemiol. 2008;167(7):875–81.

    Article  Google Scholar 

  58. Healy GN, Wijndaele K, Dunstan DW, Shaw JE, Salmon J, Zimmet PZ, et al. Objectively measured sedentary time, physical activity, and metabolic risk: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diab Care. 2008;31(2):369–71.

    Article  Google Scholar 

  59. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8.

    Article  Google Scholar 

  60. Dempsey PC, Howard BJ, Lynch BM, Owen N, Dunstan DW. Associations of television viewing time with adults’ well-being and vitality. Prev Med. 2014;69:69–74.

    Article  Google Scholar 

  61. Pearson N, Biddle SJ. Sedentary behavior and dietary intake in children, adolescents, and adults. A systematic review. Am J Prev Med. 2011;41(2):178–88.

    Article  Google Scholar 

  62. Bouchard C, Blair SN, Katzmarzyk PT. Less sitting, more physical activity, or higher fitness? Mayo Clin Proc. 2015;90(11):1533–40.

    Article  Google Scholar 

  63. Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. CMAJ. 2006;174(6):801–9.

    Article  Google Scholar 

  64. Jakes RW, Day NE, Khaw KT, Luben R, Oakes S, Welch A, et al. Television viewing and low participation in vigorous recreation are independently associated with obesity and markers of cardiovascular disease risk: EPIC-Norfolk population-based study. Eur J Clin Nutr. 2003;57(9):1089–96.

    Article  Google Scholar 

  65. Salmon J, Bauman A, Crawford D, Timperio A, Owen N. The association between television viewing and overweight among Australian adults participating in varying levels of leisure-time physical activity. Int J Obes Relat Metab Disord. 2000;24(5):600–6.

    Article  Google Scholar 

  66. Tucker LA, Bagwell M. Television viewing and obesity in adult females. Am J Public Health. 1991;81(7):908–11.

    Article  Google Scholar 

  67. Tucker LA, Friedman GM. Television viewing and obesity in adult males. Am J Public Health. 1989;79(4):516–8.

    Article  Google Scholar 

  68. Sidney S, Sternfeld B, Haskell WL, Jacobs DR Jr, Chesney MA, Hulley SB. Television viewing and cardiovascular risk factors in young adults: the CARDIA study. Ann Epidemiol. 1996;6(2):154–9.

    Article  Google Scholar 

  69. Howard BJ, Balkau B, Thorp AA, Magliano DJ, Shaw JE, Owen N, et al. Associations of overall sitting time and TV viewing time with fibrinogen and C reactive protein: the AusDiab study. Br J Sports Med. 2015;49(4):255–8.

    Article  Google Scholar 

  70. Fung TT, Hu FB, Yu J, Chu NF, Spiegelman D, Tofler GH, et al. Leisure-time physical activity, television watching, and plasma biomarkers of obesity and cardiovascular disease risk. Am J Epidemiol. 2000;152(12):1171–8.

    Article  Google Scholar 

  71. Thorp AA, Healy GN, Owen N, Salmon J, Ball K, Shaw JE, et al. Deleterious associations of sitting time and television viewing time with cardiometabolic risk biomarkers: Australian Diabetes, Obesity and Lifestyle (AusDiab) study 2004–2005. Diab Care. 2010;33(2):327–34.

    Article  Google Scholar 

  72. Kronenberg F, Pereira MA, Schmitz MK, Arnett DK, Evenson KR, Crapo RO, et al. Influence of leisure time physical activity and television watching on atherosclerosis risk factors in the NHLBI Family Heart Study. Atherosclerosis. 2000;153(2):433–43.

    Article  Google Scholar 

  73. Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ, et al. Objectively measured light-intensity physical activity is independently associated with 2-h plasma glucose. Diab Care. 2007;30(6):1384–9.

    Article  Google Scholar 

  74. Healy GN, Dunstan DW, Salmon J, Shaw JE, Zimmet PZ, Owen N. Television time and continuous metabolic risk in physically active adults. Med Sci Sports Exerc. 2008;40(4):639–45.

    Article  Google Scholar 

  75. Healy GN, Matthews CE, Dunstan DW, Winkler EA, Owen N. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003–06. Eur Heart J. 2011;32(5):590–7.

    Article  Google Scholar 

  76. Dunstan DW, Salmon J, Owen N, Armstrong T, Zimmet PZ, Welborn TA, et al. Associations of TV viewing and physical activity with the metabolic syndrome in Australian adults. Diabetologia. 2005;48(11):2254–61.

    Article  Google Scholar 

  77. Sisson SB, Camhi SM, Church TS, Martin CK, Tudor-Locke C, Bouchard C, et al. Leisure time sedentary behavior, occupational/domestic physical activity, and metabolic syndrome in U.S. men and women. Metab Syndr Relat Disord. 2009;7(6):529–36.

    Article  Google Scholar 

  78. Chang PC, Li TC, Wu MT, Liu CS, Li CI, Chen CC, et al. Association between television viewing and the risk of metabolic syndrome in a community-based population. BMC Public Health. 2008;8:193.

    Article  Google Scholar 

  79. Wijndaele K, Duvigneaud N, Matton L, Duquet W, Delecluse C, Thomis M, et al. Sedentary behaviour, physical activity and a continuous metabolic syndrome risk score in adults. Eur J Clin Nutr. 2009;63(3):421–9.

    Article  Google Scholar 

  80. Safdar A, Hamadeh MJ, Kaczor JJ, Raha S, Debeer J, Tarnopolsky MA. Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults. PLoS One. 2010;5(5):e10778.

    Article  Google Scholar 

  81. Loprinzi PD. Leisure-time screen-based sedentary behavior and leukocyte telomere length: implications for a new leisure-time screen-based sedentary behavior mechanism. Mayo Clin Proc. 2015;90(6):786–90.

    Article  Google Scholar 

  82. Bergouignan A, Rudwill F, Simon C, Blanc S. Physical inactivity as the culprit of metabolic inflexibility: evidence from bed-rest studies. J Appl Physiol (1985). 2011;111(4):1201–10.

    Article  Google Scholar 

  83. Lipman RL, Raskin P, Love T, Triebwasser J, Lecocq FR, Schnure JJ. Glucose intolerance during decreased physical activity in man. Diabetes. 1972;21(2):101–7.

    Article  Google Scholar 

  84. Smorawinski J, Kaciuba-Uscilko H, Nazar K, Kubala P, Kaminska E, Ziemba AW, et al. Effects of three-day bed rest on metabolic, hormonal and circulatory responses to an oral glucose load in endurance or strength trained athletes and untrained subjects. J Physiol Pharmacol. 2000;51(2):279–89.

    Google Scholar 

  85. Stuart CA, Shangraw RE, Prince MJ, Peters EJ, Wolfe RR. Bed-rest-induced insulin resistance occurs primarily in muscle. Metabolism. 1988;37(8):802–6.

    Article  Google Scholar 

  86. Hamburg NM, McMackin CJ, Huang AL, Shenouda SM, Widlansky ME, Schulz E, et al. Physical inactivity rapidly induces insulin resistance and microvascular dysfunction in healthy volunteers. Arterioscler Thromb Vasc Biol. 2007;27(12):2650–6.

    Article  Google Scholar 

  87. Blanc S, Normand S, Pachiaudi C, Fortrat JO, Laville M, Gharib C. Fuel homeostasis during physical inactivity induced by bed rest. J Clin Endocrinol Metab. 2000;85(6):2223–33.

    Google Scholar 

  88. Greenleaf JE. Intensive exercise training during bed rest attenuates deconditioning. Med Sci Sports Exerc. 1997;29(2):207–15.

    Article  Google Scholar 

  89. Yanagibori R, Kondo K, Suzuki Y, Kawakubo K, Iwamoto T, Itakura H, et al. Effect of 20 days’ bed rest on the reverse cholesterol transport system in healthy young subjects. J Intern Med. 1998;243(4):307–12.

    Article  Google Scholar 

  90. Hojbjerre L, Sonne MP, Alibegovic AC, Dela F, Vaag A, Meldgaard JB, et al. Impact of physical inactivity on subcutaneous adipose tissue metabolism in healthy young male offspring of patients with type 2 diabetes. Diabetes. 2010;59(11):2790–8.

    Article  Google Scholar 

  91. Stump CS, Hamilton MT, Sowers JR. Effect of antihypertensive agents on the development of type 2 diabetes mellitus. Mayo Clin Proc. 2006;81(6):796–806.

    Article  Google Scholar 

  92. Shimada M, Ishibashi S, Gotoda T, Kawamura M, Yamamoto K, Inaba T, et al. Overexpression of human lipoprotein lipase protects diabetic transgenic mice from diabetic hypertriglyceridemia and hypercholesterolemia. Arterioscler Thromb Vasc Biol. 1995;15(10):1688–94.

    Article  Google Scholar 

  93. Komurcu-Bayrak E, Onat A, Poda M, Humphries SE, Acharya J, Hergenc G, et al. The S447X variant of lipoprotein lipase gene is associated with metabolic syndrome and lipid levels among Turks. Clin Chim Acta. 2007;383(1-2):110–5.

    Article  Google Scholar 

  94. Saiki A, Oyama T, Endo K, Ebisuno M, Ohira M, Koide N, et al. Preheparin serum lipoprotein lipase mass might be a biomarker of metabolic syndrome. Diab Res Clin Pract. 2007;76(1):93–101.

    Article  Google Scholar 

  95. Kim H, Iwasaki K, Miyake T, Shiozawa T, Nozaki S, Yajima K. Changes in bone turnover markers during 14-day 6 degrees head-down bed rest. J Bone Miner Metab. 2003;21(5):311–5.

    Article  Google Scholar 

  96. Baecker N, Tomic A, Mika C, Gotzmann A, Platen P, Gerzer R, et al. Bone resorption is induced on the second day of bed rest: results of a controlled crossover trial. J Appl Physiol (1985). 2003;95(3):977–82.

    Article  Google Scholar 

  97. Zwart SR, Hargens AR, Lee SM, Macias BR, Watenpaugh DE, Tse K, et al. Lower body negative pressure treadmill exercise as a countermeasure for bed rest-induced bone loss in female identical twins. Bone. 2007;40(2):529–37.

    Article  Google Scholar 

  98. Tremblay MS, Colley RC, Saunders TJ, Healy GN, Owen N. Physiological and health implications of a sedentary lifestyle. Appl Physiol Nutr Metab. 2010;35(6):725–40.

    Article  Google Scholar 

  99. Mujika I, Padilla S. Cardiorespiratory and metabolic characteristics of detraining in humans. Med Sci Sports Exerc. 2001;33(3):413–21.

    Article  Google Scholar 

  100. Krogh-Madsen R, Thyfault JP, Broholm C, Mortensen OH, Olsen RH, Mounier R, et al. A 2-wk reduction of ambulatory activity attenuates peripheral insulin sensitivity. J Appl Physiol (1985). 2010;108(5):1034–40.

    Article  Google Scholar 

  101. Olsen RH, Krogh-Madsen R, Thomsen C, Booth FW, Pedersen BK. Metabolic responses to reduced daily steps in healthy nonexercising men. JAMA. 2008;299(11):1261–3.

    Article  Google Scholar 

  102. Bergouignan A, Momken I, Lefai E, Antoun E, Schoeller DA, Platat C, et al. Activity energy expenditure is a major determinant of dietary fat oxidation and trafficking, but the deleterious effect of detraining is more marked than the beneficial effect of training at current recommendations. Am J Clin Nutr. 2013;98(3):648–58.

    Article  Google Scholar 

  103. Simsolo RB, Ong JM, Kern PA. The regulation of adipose tissue and muscle lipoprotein lipase in runners by detraining. J Clin Invest. 1993;92(5):2124–30.

    Article  Google Scholar 

  104. Stephens BR, Granados K, Zderic TW, Hamilton MT, Braun B. Effects of 1 day of inactivity on insulin action in healthy men and women: interaction with energy intake. Metabolism. 2011;60(7):941–9.

    Article  Google Scholar 

  105. Duvivier BM, Schaper NC, Bremers MA, van Crombrugge G, Menheere PP, Kars M, et al. Minimal intensity physical activity (standing and walking) of longer duration improves insulin action and plasma lipids more than shorter periods of moderate to vigorous exercise (cycling) in sedentary subjects when energy expenditure is comparable. PLoS One. 2013;8(2):e55542.

    Article  Google Scholar 

  106. Dunstan DW, Kingwell BA, Larsen R, Healy GN, Cerin E, Hamilton MT, et al. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diab Care. 2012;35(5):976–83.

    Article  Google Scholar 

  107. Thorp AA, Kingwell BA, Sethi P, Hammond L, Owen N, Dunstan DW. Alternating bouts of sitting and standing attenuate postprandial glucose responses. Med Sci Sports Exerc. 2014;46(11):2053–61.

    Article  Google Scholar 

  108. Peddie MC, Bone JL, Rehrer NJ, Skeaff CM, Gray AR, Perry TL. Breaking prolonged sitting reduces postprandial glycemia in healthy, normal-weight adults: a randomized crossover trial. Am J Clin Nutr. 2013;98(2):358–66.

    Article  Google Scholar 

  109. Dempsey PC, Blakenship JM, Owen N, Stranznicky N, Cohen N, Braun B, et al. 53-LB: interrupting prolonged sitting modulates glycemic control in adults with type 2 diabetes. Diabetes. 2015;64(Suppl 1):LB13.

    Google Scholar 

  110. Dempsey PC, Sacre JW, Stranznicky N, Lambert GW, Cohen N, Owen N, et al. Interrupting prolonged sitting reduced blood pressure and plasma norepinepherine in adults with type 2 diabetes. Circulation. 2015;132:A15859.

    Google Scholar 

  111. Larsen RN, Kingwell BA, Robinson C, Hammond L, Cerin E, Shaw JE, et al. Breaking up of prolonged sitting over three days sustains, but does not enhance, lowering of postprandial plasma glucose and insulin in overweight and obese adults. Clin Sci (Lond). 2015;129(2):117–27.

    Article  Google Scholar 

  112. Bergouignan A, Latouche C, Reddy-Luthmoodoo M, Natoli A, Owen N, Dunstan DW, et al. Breaking up sedentary time modulates both the contraction- and insulin-stimulated glucose uptake pathways in skeletal muscle. Diabetes. 2015;6(Suppl 1):A552.

    Google Scholar 

  113. Latouche C, Jowett JB, Carey AL, Bertovic DA, Owen N, Dunstan DW, et al. Effects of breaking up prolonged sitting on skeletal muscle gene expression. J Appl Physiol (1985). 2013;114(4):453–60.

    Article  Google Scholar 

  114. Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109(23 Suppl 1):Iii27–32.

    Google Scholar 

  115. Vita JA, Keaney JF Jr. Endothelial function: a barometer for cardiovascular risk? Circulation. 2002;106(6):640–2.

    Article  Google Scholar 

  116. Thosar SS, Bielko SL, Mather KJ, Johnston JD, Wallace JP. Effect of prolonged sitting and breaks in sitting time on endothelial function. Med Sci Sports Exerc. 2015;47(4):843–9.

    Article  Google Scholar 

  117. Restaino RM, Holwerda SW, Credeur DP, Fadel PJ, Padilla J. Impact of prolonged sitting on lower and upper limb micro- and macrovascular dilator function. Exp Physiol. 2015;100(7):829–38.

    Article  Google Scholar 

  118. Larsen RN, Kingwell BA, Sethi P, Cerin E, Owen N, Dunstan DW. Breaking up prolonged sitting reduces resting blood pressure in overweight/obese adults. Nutr Metab Cardiovasc Dis. 2014;24(9):976–82.

    Article  Google Scholar 

  119. Howard BJ, Fraser SF, Sethi P, Cerin E, Hamilton MT, Owen N, et al. Impact on hemostatic parameters of interrupting sitting with intermittent activity. Med Sci Sports Exerc. 2013;45(7):1285–91.

    Article  Google Scholar 

  120. Bey L, Hamilton MT. Suppression of skeletal muscle lipoprotein lipase activity during physical inactivity: a molecular reason to maintain daily low-intensity activity. J Physiol. 2003;551(Pt 2):673–82.

    Article  Google Scholar 

  121. Bey L, Akunuri N, Zhao P, Hoffman EP, Hamilton DG, Hamilton MT. Patterns of global gene expression in rat skeletal muscle during unloading and low-intensity ambulatory activity. Physiol Genomics. 2003;13(2):157–67.

    Article  Google Scholar 

  122. Zderic TW, Hamilton MT. Identification of hemostatic genes expressed in human and rat leg muscles and a novel gene (LPP1/PAP2A) suppressed during prolonged physical inactivity (sitting). Lipids Health Dis. 2012;11:137.

    Article  Google Scholar 

  123. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59.

    Article  Google Scholar 

  124. Australian Department of Health. Maker your move – sit less – be active for life! Canberra: Commonwelath Government of Australia Department of Health; 2014.

    Google Scholar 

  125. Ministry of Health. Eating and activity guidelines for New Zealand adults. Wellington: Ministry of Health; 2015.

    Google Scholar 

  126. Department of Health and Physical Activity, Health and Improvement and Protection. Start Active, Stay Active: a report on physical activity for health from the four home countries’ Chief Medical Officers. UK Department of Health; 2011. https://www.gov.uk/government/publications/start-active-a-report-on-physical-activity-from-the-four-home-countries-chief-medical-officers

  127. Owen N, Healy GN, Howard B, Dunstan DW. Too much sitting: health risks of sedentary behaviour and opportunities for change. President’s Council on Fitness, Sport & Nutrition. Res Digest. 2012;13(3):2–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan S. Grace .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Grace, M.S., Dunstan, D.W. (2018). Sedentary Behaviour and Mortality. In: Leitzmann, M., Jochem, C., Schmid, D. (eds) Sedentary Behaviour Epidemiology. Springer Series on Epidemiology and Public Health. Springer, Cham. https://doi.org/10.1007/978-3-319-61552-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61552-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61550-9

  • Online ISBN: 978-3-319-61552-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics