Skip to main content

Magnetic Resonance Imaging (MRI)

  • Chapter
  • First Online:
An Introduction to Medical Physics

Abstract

This chapter provides a brief introduction to the physics of magnetic resonance imaging (MRI) for undergraduate students. The first part of the chapter will introduce the reader to the basics of MRI including the MR imaging principle using a static magnetic field B0, radiofrequency field B1, gradient magnetic fields and MRI pulse sequences. The second part explains the MRI contrast parameters T1, T2, proton density ρ and T2 *. The third part describes physiological and functional MR imaging including cardiac MRI, Magnetic Resonance Angiography, perfusion MRI, functional MRI, diffusion weighted MRI and MR Spectroscopy. The focus of the fourth part is on MRI safety. The fifth part highlights future MRI applications such as Ultrahigh-Field MRI, Ultrafast sequences, MRI-guided interventions and Hybrid MR Imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Baltzer PA, Dietzel M, Kaiser WA (2012) MR-spectroscopy at 1.5 tesla and 3 tesla. Useful? A systematic review and meta-analysis. Eur J Radiol 81(Suppl 1):S6–S9

    Article  Google Scholar 

  • Brinegar C, Wu YJ, Foley LM, Hitchens TK, Ye Q, Ho C et al (2008) Real-time cardiac MRI without triggering, gating, or breath holding. Conf Proc IEEE Eng Med Biol Soc 2008:3381–3384

    Google Scholar 

  • Da Rosa MR, Trachtenberg J, Chopra R, Haider MA (2011) Early experience in MRI-guided therapies of prostate cancer: HIFU, laser and photodynamic treatment. Cancer Imaging 11(Spec No A):S3–S8

    Google Scholar 

  • Detre JA, Floyd TF (2001) Functional MRI and its applications to the clinical neurosciences. Neuroscientist 7(1):64–79

    Article  Google Scholar 

  • Goetti R, Feuchtner G, Stolzmann P, Donati OF, Wieser M, Plass A et al (2011) Delayed enhancement imaging of myocardial viability: low-dose high-pitch CT versus MRI. Eur Radiol 21(10):2091–2099

    Article  Google Scholar 

  • Heverhagen JT, Bourekas E, Sammet S, Knopp MV, Schmalbrock P (2008) Time-of-flight magnetic resonance angiography at 7 Tesla. Investig Radiol 43(8):568–573

    Article  Google Scholar 

  • Huang Z, Yuh KA, Lo SS, Grecula JC, Sammet S, Sammet CL et al (2014) Validation of optimal DCE-MRI perfusion threshold to classify at-risk tumor imaging voxels in heterogeneous cervical cancer for outcome prediction. Magn Reson Imaging 32(10):1198–1205

    Article  Google Scholar 

  • Irfanoglu MO, Machiraju R, Sammet S, Pierpaoli C, Knopp MV (2008) Automatic deformable diffusion tensor registration for fiber population analysis. Med Image Comput Comput Assist Interv 11(Pt 2):1014–1022

    Google Scholar 

  • Janoos F, Machiraju R, Sammet S, Knopp MV, Morocz IA (2010) Unsupervised learning of brain states from fMRI data. Med Image Comput Comput Assist Interv 13(Pt 2):201–208

    Google Scholar 

  • Kanal E, Shellock FG, Talagala L (1990) Safety considerations in MR imaging. Radiology 176(3):593–606

    Article  Google Scholar 

  • Kanal E, Froelich J, Barkovich AJ, Borgstede J, Bradley W Jr, Gimbel JR et al (2015) Standardized MR terminology and reporting of implants and devices as recommended by the American College of Radiology Subcommittee on MR Safety. Radiology 274(3):866–870

    Article  Google Scholar 

  • Kremer S, Oppenheim C, Schmitt E, Dietemann JL (2007) Diffusion MRI: technique and clinical applications. J Radiol 88(3 Pt 2):428–443

    Article  Google Scholar 

  • Larson AC, White RD, Laub G, McVeigh ER, Li D, Simonetti OP (2004) Self-gated cardiac cine MRI. Magn Reson Med 51(1):93–102

    Article  Google Scholar 

  • Lauterbur PC (1973) Image formation by induced local interactions. Examples employing nuclear magnetic resonance. Clin Orthop Relat Res 1989(244):3–6

    Google Scholar 

  • Lauterbur PC (2004) Nobel lecture. All science is interdisciplinary–from magnetic moments to molecules to men. Biosci Rep 24(3):165–178

    Article  Google Scholar 

  • Li T, Mirowitz SA (2004) Fast multi-planar gradient echo MR imaging: impact of variation in pulse sequence parameters on image quality and artifacts. Magn Reson Imaging 22(6):807–814

    Article  Google Scholar 

  • Mansfield P (1984) Real-time echo-planar imaging by NMR. Br Med Bull 40(2):187–190

    Article  Google Scholar 

  • Minati L, Grisoli M, Bruzzone MG (2007) MR spectroscopy, functional MRI, and diffusion-tensor imaging in the aging brain: a conceptual review. J Geriatr Psychiatry Neurol 20(1):3–21

    Article  Google Scholar 

  • Mitchell MR, Tarr RW, Conturo TE, Partain CL, James AE Jr (1986) Spin echo technique selection: basic principles for choosing MRI pulse sequence timing intervals. Radiographics 6(2):245–260

    Article  Google Scholar 

  • Mousseaux E, Sapoval M, Gaux JC (1995) MRI in cardiology: clinical applications and perspectives. Ann Radiol (Paris) 38(1–2):55–68

    Google Scholar 

  • Nature (1952) Nobel prize for physics, 1952. Nature 170(4335):911–912

    Google Scholar 

  • Ouzounian M, Liu PP (2007) Review: contrast-enhanced MRA is more sensitive and specific than CT angiography or ultrasonography for detection of lower-limb PAD. ACP J Club 147(3):77

    Google Scholar 

  • Pichler BJ, Judenhofer MS, Wehrl HF (2008) PET/MRI hybrid imaging: devices and initial results. Eur Radiol 18(6):1077–1086

    Article  Google Scholar 

  • Roldan-Valadez E, Lopez-Mejia M (2014) Current concepts on magnetic resonance imaging (MRI) perfusion-diffusion assessment in acute ischaemic stroke: a review & an update for the clinicians. Indian J Med Res 140(6):717–728

    Google Scholar 

  • Sammet S, Bock M, Streckenbach M, Bachert P (2002) Proton spinlocking and T1 rho-weighted MR imaging at 1.5 T. Z Med Phys 12(1):16–23

    Article  Google Scholar 

  • Sammet S, Koch RM, Aguila F, Knopp MV (2010) Residual magnetism in an MRI suite after field-rampdown: what are the issues and experiences? J Magn Reson Imaging 31(5):1272–1276

    Article  Google Scholar 

  • Shah SN, Huang SS (2015) Hybrid PET/MR imaging: physics and technical considerations. Abdom Imaging 40(6):1358–1365

    Article  Google Scholar 

  • Shellock FG, Crues JV (2004) MR procedures: biologic effects, safety, and patient care. Radiology 232(3):635–652

    Article  Google Scholar 

  • Speck O, Tempelmann C (2010) Human 7T MRI: first clinical and neuroscientific applications. Neuroradiol J 23(5):535–546

    Article  Google Scholar 

  • Stafford Johnson DB, Prince MR, Chenevert TL (1998) Magnetic resonance angiography: a review. Acad Radiol 5(4):289–305

    Article  Google Scholar 

  • Tello R, Mitchell PJ, Witte DJ, Thomson KR (2003) T2 dark blood MRA for renal artery stenosis detection: preliminary observations. Comput Med Imaging Graph 27(1):11–16

    Article  Google Scholar 

  • Tudisca C, Nasoodi A, Fraioli F (2015) PET-MRI: clinical application of the new hybrid technology. Nucl Med Commun 36(7):666–678

    Article  Google Scholar 

  • van der Kolk AG, Hendrikse J, Zwanenburg JJ, Visser F, Luijten PR (2013) Clinical applications of 7 T MRI in the brain. Eur J Radiol 82(5):708–718

    Article  Google Scholar 

  • von Schulthess GK, Hilfiker P (1998) Interventional MRI: the way to the future. J Invasive Cardiol 10(9):571–577

    Google Scholar 

  • Wang H, Amini AA (2012) Cardiac motion and deformation recovery from MRI: a review. IEEE Trans Med Imaging 31(2):487–503

    Article  Google Scholar 

  • Yamada S, Tsuchiya K, Bradley WG, Law M, Winkler ML, Borzage MT et al (2015) Current and emerging MR imaging techniques for the diagnosis and management of CSF flow disorders: a review of phase-contrast and time-spatial labeling inversion pulse. AJNR Am J Neuroradiol 36(4):623–630

    Article  Google Scholar 

  • Yamashita Y, Tang Y, Takahashi M (1998) Ultrafast MR imaging of the abdomen: echo planar imaging and diffusion-weighted imaging. J Magn Reson Imaging 8(2):367–374

    Article  Google Scholar 

  • Yang X, Sammet S, Schmalbrock P, Knopp MV (2010) Postprocessing correction for distortions in T2* decay caused by quadratic cross-slice B0 inhomogeneity. Magn Reson Med 63(5):1258–1268

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Sammet MD, PhD, DABR, DABMRS, FAMP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sammet, S. (2017). Magnetic Resonance Imaging (MRI). In: Maqbool, M. (eds) An Introduction to Medical Physics. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-61540-0_9

Download citation

Publish with us

Policies and ethics