Skip to main content

Beaver Ponds and the Carbon Cycle

  • Chapter
  • First Online:
Beavers: Boreal Ecosystem Engineers
  • 1013 Accesses

Abstract

Carbon takes a variety of forms in beaver ponds and beaver meadows, including live plant biomass, standing dead biomass, soil organic matter, soil carbonates, dissolved organic carbon, and trace gases. The pools of carbon in these storage compartments and the fluxes between them are discussed. The slow decomposition rate of beaver meadow plant litter under anaerobic conditions promotes the accumulation of organic (O) soil horizons, which have a calculated mean residence time of 69 years. The carbon per unit area in soils that were formerly impounded by beavers (15.1 ± 6.8 km C m−2) was nearly twice that of adjacent never-impounded forest soils (8.2 ± 2.9 km C m−2). Beaver meadow sedge peat mineralization was compared with that of bog peat in long-term (80-week) laboratory incubations. Beaver meadow sedge peat had significantly higher carbon mineralization rates under all incubation conditions except aerobic incubation at 15 °C (other treatments were anaerobic incubation at 15 and 30 °C and aerobic incubation at 30 °C). Field measurement of trace gas fluxes showed that beaver ponds and beaver meadows with water table at or above the soil surface emitted methane, but beaver meadows with water tables below the soil surface did not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts R, de Caluwe H (1997) Nutritional and plant-mediated controls on leaf litter decomposition of Carex species. Ecology 78(1):244–260

    Article  Google Scholar 

  • Bartsch I, Moore TR (1985) A preliminary investigation of primary production and decomposition in four peatlands near Schefferville, Québec. Can J Bot 63(7):1241–1248

    Article  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47(2):151–163

    Article  CAS  Google Scholar 

  • Bridgham SD, Johnston CA, Pastor J, Updegraff K (1995) Potential feedbacks of northern wetlands on climate change. Bioscience 45:262–274

    Article  Google Scholar 

  • Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of north American wetlands. Wetlands 26(4):889–916

    Article  Google Scholar 

  • Bubier JL, Moore TR, Roulet NT (1993) Methane emissions from wetlands in the midboreal region of northern Ontario, Canada. Ecology 74(8):2240–2254

    Article  Google Scholar 

  • Chamie JPM, Richardson CJ (1978) Decomposition in northern wetlands. In: Good RE, Whigham DF, Simpson RL (eds) Freshwater wetlands: ecological processes and management potential. Academic, New York, pp 115–130

    Google Scholar 

  • Cirmo CP, Driscoll CT (1993) Beaver pond biogeochemistry - acid neutralizing capacity generation in a headwater wetland. Wetlands 13(4):277–292

    Article  Google Scholar 

  • Coleman RL, Dahm CN (1990) Stream geomorphology: effects on periphyton standing crop and primary production. J N Am Benthol Soc 9(4):293–302

    Article  Google Scholar 

  • Davis CB, van der Valk AG (1978) Litter decomposition in prairie glacial marshes. In: Good RE, Whigham DF, Simpson RL (eds) Freshwater wetlands: ecological processes and management potential. Academic, New York, pp 99–113

    Google Scholar 

  • Devito KJ, Dillon PJ, Lazerte BD (1989) Phosphorus and nitrogen retention in five Precambrian shield wetlands. Biogeochemistry 8(3):185–204

    Article  CAS  Google Scholar 

  • Dove A, Roulet NT, Crill PM, Chanton J, Boubonniere RA (1999) Methane dynamics of a northern boreal beaver pond. Ecoscience 6(4):577–586

    Article  Google Scholar 

  • Erickson HE (1994) Nitrogen and phosphorus availability, ecosystem processes, and plant community dynamics in boreal wetland meadows. PhD thesis. University of Washington, Seattle

    Google Scholar 

  • Faber-Langendoen D, Aaseng N, Hop K, Lew-Smith M (2007) Field guide to the plant community types of Voyageurs National Park. U.S. Geological Survey, Reston

    Google Scholar 

  • Ferguson A, Osborn G (1981) Minimum age of deglaciation of upper Elk Valley, British Columbia. Can J Earth Sci 18:1635–1636

    Article  Google Scholar 

  • Garrison GC (1967) Pollen stratigraphy and age of an early postglacial beaver site near Columbus, Ohio. Ohio J Sci 67(2):96–105

    Google Scholar 

  • Gower ST, Krankina O, Olson RJ, Apps M, Linder S, Wang C (2001) Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecol Appl 11(5):1395–1411

    Article  Google Scholar 

  • Hall HA, Pritchard G (1975) The food of larvae of Tipula Sacra Alexander in a series of abandoned beaver ponds (Diptera: Tipulidae). J Anim Ecol 44:55–66

    Article  Google Scholar 

  • Hanson WD, Campbell RS (1963) The effects of pool size and beaver activity on distribution and abundance of warmwater fishes in a North Missouri stream. Am Midl Nat 69(1):136–149

    Article  Google Scholar 

  • Hartke KM, Hepp GR (2004) Habitat use and preferences of breeding female wood ducks. J Wildl Manag 68(1):84–93

    Article  Google Scholar 

  • Hillman GR, Feng JC, Feng CC, Wang YH (2004) Effects of catchment characteristics and disturbances on storage and export of dissolved organic carbon in a boreal headwater stream. Can J Fish Aquat Sci 61(8):1447–1460

    Article  CAS  Google Scholar 

  • Hodkinson ID (1975a) Dry weight loss and chemical changes in vascular plant litter of terrestrial origin, occurring in a beaver pond ecosystem. J Ecol 63(1):131–142

    Article  CAS  Google Scholar 

  • Hodkinson ID (1975b) Energy flow and organic matter decomposition in an abandoned beaver pond ecosystem. Oecologia 21(2):131–139

    Article  CAS  PubMed  Google Scholar 

  • James CD, Lanman RB (2012) Novel physical evidence that beaver historically were native to the Sierra Nevada. Calif Fish Game 98(2):129–132

    Google Scholar 

  • Johnston CA (1988) Productivity of wet soils: biomass of cultivated and natural vegetation. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  • Johnston CA (2014) Beaver pond effects on carbon storage in soils. Geoderma 213:371–378

    Article  CAS  Google Scholar 

  • Johnston CA, Bedford BL, Bourdaghs M, Brown T, Frieswyk C, Tulbure M, Vaccaro L, Zedler JB (2007) Plant species indicators of physical environment in Great Lakes coastal wetlands. J Great Lakes Res 33(sp3):106–124

    Article  CAS  Google Scholar 

  • Johnston CA, Groffman P, Breshears DD, Cardon ZG, Currie W, Emanuel W, Gaudinski J, Jackson RB, Lajtha K, Nadelhoffer K, Nelson D, Post WM, Retallack G, Wielopolski L (2004) Carbon cycling in soil. Front Ecol Environ 2(10):522–528

    Article  Google Scholar 

  • Johnston CA, Naiman RJ (1990) Browse selection by beaver: effects on riparian forest composition. Can J For Res 20:1036–1043

    Article  Google Scholar 

  • Johnston CA, Windels SK (2015) Using beaver works to estimate colony activity in boreal landscapes (online spatial data). CUAHSI Spatial Data Service, Consortium of Universities for the Advancement of Hydrologic Science Inc, Medford. http://spatial.cuahsi.org/johnstonC01/

    Book  Google Scholar 

  • Lockmiller RL (1979) Use of beaver ponds by southeastern woodpeckers in winter. J Wildl Manag 43(1):263–266

    Article  Google Scholar 

  • Margolis BE, Castro MS, Raesly RL (2001) The impact of beaver impoundments on the water chemistry of two Appalachian streams. Can J Fish Aquat Sci 58(11):2271–2283

    Article  CAS  Google Scholar 

  • McClaugherty CA, Pastor J, Aber JD, Melillo JM (1985) Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology 66(1):266–275

    Article  Google Scholar 

  • Menzel MA, Carter TC, Ford WM, Chapman BR (2001) Tree-roost characteristics of subadult and female adult evening bats (Nycticeius humeralis) in the upper coastal plain of South Carolina. Am Midl Nat 145(1):112–119

    Article  Google Scholar 

  • Merendino MT, McCullough GB, North NR (1995) Wetland availability and use by breeding waterfowl in southern Ontario. J Wildl Manag 59(3):527–532

    Article  Google Scholar 

  • Moore TR (2003) Dissolved organic carbon in a northern boreal landscape. Glob Biogeochem Cycles 17(4):n/a–n/a

    Article  Google Scholar 

  • Morris DM (2014) Aquatic habitat use by North American moose (Alces alces) and associated richness and biomass of submersed and floating-leaved aquatic vegetation in north-central Minnesota. Lakehead University, Thunder Bay

    Google Scholar 

  • Naiman RJ, Manning T, Johnston CA (1991) Beaver population fluctuations and tropospheric methane emissions in boreal wetlands. Biogeochemistry 12:1–15

    Article  Google Scholar 

  • Nummi P, Kattainen S, Ulander P, Hahtola A (2011) Bats benefit from beavers: a facilitative link between aquatic and terrestrial food webs. Biodivers Conserv 20(4):851–859

    Article  Google Scholar 

  • Peach M, Zedler JB (2006) How tussocks structure sedge meadow vegetation. Wetlands 26(2):322–335

    Article  Google Scholar 

  • Polunin NVC (1984) The decomposition of emergent macrophytes in fresh water. Adv Ecol Res 14:115–165

    Article  Google Scholar 

  • Rains B (1987) Holocene alluvial sediments and a radio-carbon dated relict beaver dam, Whitehead Creek, Edmonton, Alberta. Can Geogr 31:272–277

    Article  Google Scholar 

  • Reader RJ, Stewart JM (1972) The relationship between net primary production and accumulation for a Peatland in southeastern Manitoba. Ecology 53(6):1024–1037

    Article  Google Scholar 

  • Robinson S, Beaudoin AB, Froese DG, Doubt J, Clague JJ (2007) Plant macrofossils associated with an early Holocene beaver dam in interior Alaska. Arctic 60(4):430–438

    Google Scholar 

  • Roulet NT, Ash R, Moore TR (1992) Low boreal wetlands as a source of atmospheric methane. J Geophys Res 97(D4):3739–3749

    Article  CAS  Google Scholar 

  • Roulet NT, Crill PM, Comer NT, Dove A, Boubonniere RA (1997) CO2 and CH4 flux between a boreal beaver pond and the atmosphere. J Geophys Res 102:29313–29319

    Article  CAS  Google Scholar 

  • Schiff SL, Aravena R, Trumbore SE, Dillon PJ (1990) Dissolved organic carbon cycling in forested watersheds: a carbon isotope approach. Water Resour Res 26(12):2949–2957

    Article  CAS  Google Scholar 

  • Stokland JN, Siitonen J, Jonsson BG (2012) Biodiversity in dead wood. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Szumigalski AR, Bayley SE (1996) Decomposition along a bog to rich fen gradient in central Alberta, Canada. Can J Bot 74(4):573–581

    Article  Google Scholar 

  • Tarnocai C, Kettles IM, Lacelle B (1998) The amount of organic carbon in various soil orders and ecological provinces in Canada. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Soil processes and the carbon cycle. CRC Press, Boca Raton, pp 81–92

    Google Scholar 

  • Tedford RH, Harington CR (2003) An Arctic mammal fauna from the early Pliocene of North America. Nature 425(6956):388–390

    Article  CAS  PubMed  Google Scholar 

  • Thompson S, Vehkaoja M, Nummi P (2016) Beaver-created deadwood dynamics in the boreal forest. For Ecol Manag 360:1–8

    Article  Google Scholar 

  • Thormann MN, Bayley SE, Currah RS (2001) Comparison of decomposition of belowground and aboveground plant litters in peatlands of boreal Alberta, Canada. Can J Bot 79(1):9–22

    CAS  Google Scholar 

  • Turner DP, Koerper GJ, Harmon ME, Lee JJ (1995) A carbon budget for forests of the conterminous United States. Ecol Appl 5(2):421–436

    Article  Google Scholar 

  • Updegraff K, Pastor J, Bridgham SD, Johnston CA (1995) Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. Ecol Appl 5(1):151–163

    Article  Google Scholar 

  • Vehkaoja M (2016) Beaver in the drainage basin: an ecosystem engineer restores wetlands in the boreal landscape. University of Helsinki, Helsinki

    Google Scholar 

  • Vehkaoja M, Nummi P, Rask M, Tulonen T, Arvola L (2015) Spatiotemporal dynamics of boreal landscapes with ecosystem engineers: beavers influence the biogeochemistry of small lakes. Biogeochemistry 124(1):405–415

    Article  CAS  Google Scholar 

  • Weyhenmeyer CE (1999) Methane emissions from beaver ponds: rates, patterns, and transport mechanisms. Glob Biogeochem Cycles 13(4):1079–1090

    Article  CAS  Google Scholar 

  • Wisconsin Department of Natural Resources (2003) Silviculture and forest aesthetics handbook. Wisconsin Department of Natural Resources, Madison

    Google Scholar 

  • Wohl E (2013) Landscape-scale carbon storage associated with beaver dams. Geophys Res Lett 40(14):3631–3636

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Johnston, C.A. (2017). Beaver Ponds and the Carbon Cycle. In: Beavers: Boreal Ecosystem Engineers. Springer, Cham. https://doi.org/10.1007/978-3-319-61533-2_8

Download citation

Publish with us

Policies and ethics