Skip to main content

Metagenomics for the Discovery of Novel Biosurfactants

  • Chapter
  • First Online:
Functional Metagenomics: Tools and Applications

Abstract

Biosurfactants offer a range of diverse applications in practically all areas of biotechnology (medical, industrial, environmental, and marine) and as such draw upon a number of overlapping fields. Due to their immense structural diversity, complexity, and biochemical properties, research is focused on the isolation of novel biosurfactants to replace chemically synthesized counterparts. Most of the described biosurfactants are of microbial origin, isolated through traditional culturing techniques. However, given that the vast majority of bacteria have yet to be cultured, metagenomics provides the potential to explore novel biosurfactants from bacteria which are recalcitrant to culturing and from exotic and unexplored environments. Despite the availability of numerous screening assays suited for high-throughput functional-based screening, there are very few examples of metagenomically derived biosurfactants. In this chapter we explore specific obstacles which have led to their underrepresentation in metagenomic screening studies and highlight the most recent successes which can inform future screening strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre-Ramírez M, Medina G, González-Valdez A et al (2012) The Pseudomonas aeruginosa rmlBDAC operon, encoding dTDP-L-rhamnose biosynthetic enzymes, is regulated by the quorum-sensing transcriptional regulator RhlR and the alternative sigma factor σS. Microbiology 158:908–916

    Article  PubMed  Google Scholar 

  • Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494

    Article  CAS  PubMed  Google Scholar 

  • Bissaro B, Monsan P, Faure R, O’Donohue M (2015) Glycosynthesis in a waterworld: new insights into the molecular basis of transglycosylation in retaining glycoside hydrolases. Biochem J 467:17–35

    Article  CAS  PubMed  Google Scholar 

  • Bourne Y, Henrissat B (2001) Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr Opin Struct Biol 11:593–600

    Article  CAS  PubMed  Google Scholar 

  • Brady SF, Clardy J (2000) Long-chain N-acyl amino acid antibiotics isolated from heterologously expressed environmental DNA. J Am Chem Soc 122:12903–12904

    Article  CAS  Google Scholar 

  • Brady SF, Clardy J (2004) Palmitoylputrescine, an antibiotic isolated from the heterologous expression of DNA extracted from bromeliad tank water. J Nat Prod 67:1283–1286

    Article  CAS  PubMed  Google Scholar 

  • Brady SF, Clardy J (2005a) N-acyl derivatives of arginine and tryptophan isolated from environmental DNA expressed in Escherichia coli. Org Lett 7:3613–3616

    Article  CAS  PubMed  Google Scholar 

  • Brady SF, Clardy J (2005b) Cloning and heterologous expression of isocyanide biosynthetic genes from environmental DNA. Angew Chem Int Ed Engl 44:7063–7065

    Article  CAS  PubMed  Google Scholar 

  • Brady SF, Chao CJ, Handelsman J, Clardy J (2001) Cloning and heterologous expression of a natural product biosynthetic gene cluster from eDNA. Org Lett 3:1981–1984

    Article  CAS  PubMed  Google Scholar 

  • Brady SF, Chao CJ, Clardy J (2004) Long-chain N-acyltyrosine synthases from environmental DNA. Appl Environ Microbiol 70:6865–6870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burch AY, Shimada BK, Browne PJ, Lindow SE (2010) Novel high-throughput detection method to assess bacterial surfactant production. Appl Environ Microbiol 76:5363–5372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burch AY, Browne PJ, Dunlap CA et al (2011) Comparison of biosurfactant detection methods reveals hydrophobic surfactants and contact-regulated production. Environ Microbiol 13:2681–2691

    Article  CAS  PubMed  Google Scholar 

  • Cabrera-Valladares N, Richardson A-P, Olvera C et al (2006) Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Appl Microbiol Biotechnol 73:187–194

    Article  CAS  PubMed  Google Scholar 

  • Charlop-Powers Z, Milshteyn A, Brady SF (2014) Metagenomic small molecule discovery methods. Curr Opin Microbiol 19C:70–75

    Article  Google Scholar 

  • Chen C-Y, Baker SC, Darton RC (2007) The application of a high throughput analysis method for the screening of potential biosurfactants from natural sources. J Microbiol Methods 70:503–510

    Article  CAS  PubMed  Google Scholar 

  • Cirigliano MC, Carman GM (1985) Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 50:846–850

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cochrane SA, Vederas JC (2014) Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Med Res Rev 36(1):1292–1327

    Google Scholar 

  • Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317

    Article  CAS  PubMed  Google Scholar 

  • De Bruyn F, Maertens J, Beauprez J et al (2015) Biotechnological advances in UDP-sugar based glycosylation of small molecules. Biotechnol Adv 33:288–302

    Article  PubMed  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desmet T, Soetaert W, Bojarová P et al (2012) Enzymatic glycosylation of small molecules: challenging substrates require tailored catalysts. Chemistry 18:10786–10801

    Article  CAS  PubMed  Google Scholar 

  • Deziel E (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149:2005–2013

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M, Martínez-Martínez M, Bargiela R et al (2015) Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microb Biotechnol. doi:10.1111/1751-7915.12309

  • Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 58:453–488

    Article  CAS  PubMed  Google Scholar 

  • Freeman MF, Gurgui C, Helf MJ et al (2012) Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science 338:387–390. doi:10.1126/science.1226121

  • Fujita MJ, Kimura N, Sakai A et al (2011) Cloning and heterologous expression of the vibrioferrin biosynthetic gene cluster from a marine metagenomic library. Biosci Biotechnol Biochem 75:2283–2287

    Article  CAS  PubMed  Google Scholar 

  • Gabor EM, Alkema WBL, Janssen DB (2004) Quantifying the accessibility of the metagenome by random expression cloning techniques. Environ Microbiol 6:879–886

    Article  CAS  PubMed  Google Scholar 

  • Gao JL, Weissenmayer B, Taylor AM et al (2004) Identification of a gene required for the formation of lyso-ornithine lipid, an intermediate in the biosynthesis of ornithine-containing lipids. Mol Microbiol 53:1757–1770

    Article  CAS  PubMed  Google Scholar 

  • Geys R, Soetaert W, Van Bogaert I (2014) Biotechnological opportunities in biosurfactant production. Curr Opin Biotechnol 30:66–72

    Article  CAS  PubMed  Google Scholar 

  • Gloux K, Leclerc M, Iliozer H et al (2007) Development of high-throughput phenotyping of metagenomic clones from the human gut microbiome for modulation of eukaryotic cell growth. Appl Environ Microbiol 73:3734–3737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorin PAJ, Spencer JFT, Tulloch AP (1961) Hydroxy fatty acid glycosides of sophorose from Torulopsis magnoliae. Can J Chem 39:846–855

    Article  CAS  Google Scholar 

  • Gurgui C, Piel J (2010) Metagenomic approaches to identify and isolate bioactive natural products from microbiota of marine sponges. In: Streit WR, Daniel R (eds) Metagenomics: methods and protocols, methods in molecular biology. Springer Science + Business Media, Berlin, pp 247–263

    Chapter  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF et al (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249

    Article  CAS  PubMed  Google Scholar 

  • Handelsman J, Liles M, Mann D, Riesenfeld C (2002) Cloning the metagenome: culture-independent access to the diversity and functions of the uncultivated microbial world. Methods Microbiol 33:241–255

    Article  CAS  Google Scholar 

  • He R, Wakimoto T, Takeshige Y et al (2012) Porphyrins from a metagenomic library of the marine sponge Discodermia calyx. Mol Biosyst 8:2334–2338

    Article  CAS  PubMed  Google Scholar 

  • Henkel M, Müller MM, Kügler JH et al (2012) Rhamnolipids as biosurfactants from renewable resources: concepts for next-generation rhamnolipid production. Process Biochem 47:1207–1219

    Article  CAS  Google Scholar 

  • Jackson SA, Borchert E, O’Gara F, Dobson AD (2015) Metagenomics for the discovery of novel biosurfactants of environmental interest from marine ecosystems. Curr Opin Biotechnol 33:176–182

    Article  CAS  PubMed  Google Scholar 

  • Jarvis F, Johnson M (1949) A glycolipid produced by Pseudomonas aeruginosa. J Am Chem Soc 71:4124–4126

    Article  CAS  Google Scholar 

  • Kakirde KS, Parsley LC, Liles MR (2010) Size does matter: application-driven approaches for soil metagenomics. Soil Biol Biochem 42:1911–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kappeli O, Finnerty W (1979) Partition of alkane by an extracellular vesicle derived from hexadecane-grown Acinetobacter. J Bacteriol 140:707–712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kebbouche-Gana S, Gana ML, Ferrioune I et al (2013) Production of biosurfactant on crude date syrup under saline conditions by entrapped cells of Natrialba sp. strain E21, an extremely halophilic bacterium isolated from a solar saltern (Ain Salah, Algeria). Extremophiles 17:981–993

    Article  CAS  PubMed  Google Scholar 

  • Kennedy J, O’Leary ND, Kiran GS et al (2011) Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. J Appl Microbiol 111:787–799

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Feng Z, Bauer JD et al (2010) Cloning large natural product gene clusters from the environment: piecing environmental DNA gene clusters back together with TAR. Biopolymers 93:833–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitamoto D, Akiba S, Hiok C, Tabuchi T (1990) Extracellular accumulation of mannosylerythritol lipids by a strain of Candida antarctica. Agric Biol Chem 54:31–36

    CAS  Google Scholar 

  • Kraas FI, Helmetag V, Wittmann M et al (2010) Functional dissection of surfactin synthetase initiation module reveals insights into the mechanism of lipoinitiation. Chem Biol 17:872–880

    Article  CAS  PubMed  Google Scholar 

  • Laureti L, Song L, Huang S et al (2011) Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc Natl Acad Sci U S A 108:6258–6263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim HK, Chung EJ, Kim J et al (2005) Characterization of a forest soil metagenome clone that confers indirubin and Indigo production on Escherichia coli. Appl Environ Microbiol 71:7768–7777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loeschcke A, Markert A, Wilhelm S et al (2013) TREX: a universal tool for the transfer and expression of biosynthetic pathways in bacteria. ACS Synth Biol 2:22–33

    Article  CAS  PubMed  Google Scholar 

  • Maget-Dana R, Peypoux F (1994) Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87:151–174

    Article  CAS  PubMed  Google Scholar 

  • Maneerat S, Bamba T, Harada K et al (2006) A novel crude oil emulsifier excreted in the culture supernatant of a marine bacterium, Myroides sp. strain SM1. Appl Microbiol Biotechnol 70:254–259

    Article  CAS  PubMed  Google Scholar 

  • Marti ME, Colonna WJ, Reznik G et al (2015) Production of fatty-acyl-glutamate biosurfactant by Bacillus subtilis on soybean co-products. Biochem Eng J 95:48–55

    Article  CAS  Google Scholar 

  • Martinez A, Kolvek SJ, Lai C et al (2004) Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression host. Appl Environ Microbiol 70:2452–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao V, Coëffet-Legal M-F, Brian P et al (2005) Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology 151:1507–1523

    Article  CAS  PubMed  Google Scholar 

  • Montiel D, Kang H-S, Chang F-Y et al (2015) Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters. Proc Natl Acad Sci U S A 112(29):8953–8958. doi:10.1073/pnas.1507606112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller MM, Hausmann R (2011) Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production. Appl Microbiol Biotechnol 91:251–264

    Article  PubMed  Google Scholar 

  • Müller C, Nolden S, Gebhardt P et al (2007) Sequencing and analysis of the biosynthetic gene cluster of the lipopeptide antibiotic Friulimicin in Actinoplanes friuliensis. Antimicrob Agents Chemother 51:1028–1037

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller MM, Kügler JH, Henkel M et al (2012) Rhamnolipids-next generation surfactants? J Biotechnol 161:366–380

    Article  Google Scholar 

  • Myers D (2010) Surfactant science and technology, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Nakar D, Gutnick DL (2001) Analysis of the wee gene cluster responsible for the biosynthesis of the polymeric bioemulsifier from the oil-degrading strain Acinetobacter lwoffii RAG-1. Microbiology 147:1937–1946

    Google Scholar 

  • Ochsner UA, Fiechter A, Reiser J (1994) Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269:19787–19795

    CAS  PubMed  Google Scholar 

  • Owen JG, Reddy BVB, Ternei MA et al (2013) Mapping gene clusters within arrayed metagenomic libraries to expand the structural diversity of biomedically relevant natural products. Proc Natl Acad Sci U S A 110:11797–11802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palme O, Moszyk A, Iphöfer D, Lang S (2010) Selected microbial glycolipids: production, modification and characterization. In: Sen R (ed) Biosurfactants. Springer, New York, pp 185–202

    Chapter  Google Scholar 

  • Pamp SJ, Tolker-Nielsen T (2007) Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol 189:2531–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peypoux F, Pommier MT, Das BC et al (1984) Structures of bacillomycin D and bacillomycin L peptidolipid antibiotics from Bacillus subtilis. J Antibiot (Tokyo) 37:1600–1604

    Article  CAS  Google Scholar 

  • Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563

    Article  CAS  PubMed  Google Scholar 

  • Peypoux F, Laprevote O, Pagadoux M, Wallach J (2004) N-acyl derivatives of Asn, new bacterial N-acyl D-amino acids with surfactant activity. Amino Acids 26:209–214

    Article  CAS  PubMed  Google Scholar 

  • Pinzon NM, Ju L-K (2009) Improved detection of rhamnolipid production using agar plates containing methylene blue and cetyl trimethylammonium bromide. Biotechnol Lett 31:1583–1588

    Article  CAS  PubMed  Google Scholar 

  • Rabausch U, Juergensen J, Ilmberger N et al (2013) Functional screening of metagenome and genome libraries for detection of novel flavonoid-modifying enzymes. Appl Environ Microbiol 79:4551–4563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahim R, Ochsner UA, Olvera C et al (2001) Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol 40:708–718

    Article  CAS  PubMed  Google Scholar 

  • Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394

    Article  PubMed  Google Scholar 

  • Rather MY, Mishra S (2013) β-Glycosidases: an alternative enzyme based method for synthesis of alkyl-glycosides. Sustain Chem Process 1:7

    Article  Google Scholar 

  • Reis RS, Pereira AG, Neves BC, Freire DMG (2011) Gene regulation of rhamnolipid production in Pseudomonas aeruginosa: a review. Bioresour Technol 102:6377–6384

    Article  CAS  PubMed  Google Scholar 

  • Rizzo C, Michaud L, Hörmann B et al (2013) Bacteria associated with sabellids (Polychaeta: Annelida) as a novel source of surface active compounds. Mar Pollut Bull 70:125–133

    Article  CAS  PubMed  Google Scholar 

  • Rokni-Zadeh H, Mangas-Losada A, De Mot R (2011) PCR detection of novel non-ribosomal peptide synthetase genes in lipopeptide-producing Pseudomonas. Microb Ecol 62:941–947

    Article  CAS  PubMed  Google Scholar 

  • Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236

    Article  CAS  PubMed  Google Scholar 

  • Rondon MR, August PR, Bettermann AD et al (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen M (1989) Surfactants and interfacial phenomenon, Third. John Wiley and Sons, New Jersey

    Google Scholar 

  • Rosenberg E, Zuckerberg A, Rubinovitz C, Gutnick DL (1979) Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties. Appl Environ Microbiol 37:402–408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sen R (2010) Biosurfactants. Landes Bioscience and Springer Science, New York

    Book  Google Scholar 

  • Schröder C, Elleuche S, Blank S, Antranikian G (2014) Characterization of a heat-active archaeal β-glucosidase from a hydrothermal spring metagenome. Enzyme Microb Technol 57:48–54. doi:10.1016/j.enzmictec.2014.01.010

  • Siegmund I, Wagner F (1991) New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnol Tech 5:265–268

    Article  CAS  Google Scholar 

  • Singer ME, Finnerty WR (1990) Physiology of biosurfactant synthesis by Rhodococcus species H13-A. Can J Microbiol 36:741–745

    Article  CAS  PubMed  Google Scholar 

  • Soberón-Chávez G, Lépine F, Déziel E (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68:718–725

    Article  PubMed  Google Scholar 

  • Suenaga H (2012) Targeted metagenomics: a high-resolution metagenomics approach for specific gene clusters in complex microbial communities. Environ Microbiol 14:13–22. doi:10.1111/j.1462-2920.2011.02438.x

  • Trindade M, van Zyl LJ, Navarro-Fernandez J, Elrazak AA (2015) Targeted metagenomics as a tool to tap into marine natural product diversity for the discovery and production of drug candidates. Front Microbiol 6:1–14

    Google Scholar 

  • Troeschel SC, Thies S, Link O et al (2012) Novel broad host range shuttle vectors for expression in Escherichia coli, Bacillus subtilis and Pseudomonas putida. J Biotechnol 161:71–79

    Article  CAS  PubMed  Google Scholar 

  • Tugrul T, Cansunar E (2005) Detecting surfactant-producing microorganisms by the drop-collapse test. World J Microbiol Biotechnol 21:851–853

    Article  CAS  Google Scholar 

  • Tuffin M, Anderson D, Heath C, Cowan D (2009) Metagenomic gene discovery: how far have we moved into novel sequence space? Biotechnol J 4:1671–1683

    Google Scholar 

  • Van Rantwijk F, Woudenberg-Van Oosterom M, Sheldon RA (1999) Glycosidase-catalysed synthesis of alkyl glycosides. J Mol Catal B Enzym 6:511–532

    Article  Google Scholar 

  • Vaux DJ, Cottingham M (2007) Method and apparatus for measuring surface configuration. 2:1–13

    Google Scholar 

  • Vences-Guzmán MÁ, Geiger O, Sohlenkamp C (2012) Ornithine lipids and their structural modifications: from A to E and beyond. FEMS Microbiol Lett 335:1–10

    Article  PubMed  Google Scholar 

  • von Rybinski W, Hill K (1998) Alkyl polyglycosides—properties and applications of a new class of surfactants. Angew Chem Int Ed 37:1328–1345

    Article  Google Scholar 

  • Walter V, Syldatk C, Hausmann R (2010) Screening concepts for the isolation of biosurfactant producing microorganisms. In: Sen R (ed) Biosurfactants. Landes Bioscience and Springer Science, New York, pp 1–13

    Google Scholar 

  • Walton JD (2000) Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fungal Genet Biol 30:167–171

    Article  CAS  PubMed  Google Scholar 

  • Wang GY, Graziani E, Waters B et al (2000) Novel natural products from soil DNA libraries in a streptomycete host. Org Lett 2:2401–2404

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Qian C, Zhang XZ et al (2012) Characterization of a novel thermostable beta-glucosidase from a metagenomic library of termite gut. Enzyme Microb Technol 51:319–324. doi:10.1016/j.enzmictec.2012.07.015

  • Wasserman HH, Keggi JJ, McKeon JE (1962) The structure of Serratamolide. J Am Chem Soc 84:2978–2982

    Article  CAS  Google Scholar 

  • Weber T, Blin K, Duddela S et al (2015) antiSMASH 3.0--a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:1–7

    Article  Google Scholar 

  • Wittgens A, Tiso T, Arndt TT et al (2011) Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microb Cell Fact 10:80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Bruns M, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu K, Rock CO (2008) RhlA converts beta-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the beta-hydroxydecanoyl-beta-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J Bacteriol 190:3147–3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marla Trindade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Williams, W., Trindade, M. (2017). Metagenomics for the Discovery of Novel Biosurfactants. In: Charles, T., Liles, M., Sessitsch, A. (eds) Functional Metagenomics: Tools and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-61510-3_6

Download citation

Publish with us

Policies and ethics