Skip to main content

Metagenomics of Plant Microbiomes

  • Chapter
  • First Online:
Functional Metagenomics: Tools and Applications

Abstract

The collective genomes of the holobiont plant comprising diverse microbiota encode a number of functions required for the host as well as for supporting the interaction between the plant and its associated microbiome. This chapter reviews various plant habitats for microorganisms, microbiome functions, and functional as well as sequence-based metagenomics screening approaches, which can be used to elucidate holobiont functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbà S, Galetto L, Carle P et al (2014) RNA-Seq profile of flavescence dorée phytoplasma in grapevine. BMC Genomics 15:1088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adams IP, Glover RH, Monger WA et al (2009) Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology. Mol Plant Pathol 104:5375–5345

    Google Scholar 

  • Alvarez TM, Goldbeck R, Santos CR et al (2013a) Development and biotechnological application of a novel endoxylanase family GH10 identified from sugarcane soil metagenome. PLoS One 8:e70014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez TM, Paiva JH, Ruiz DM et al (2013b) Structure and function of a novel cellulase 5 from sugarcane soil metagenome. PLoS One 8:e83635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bag S, Al Rwahnih M, Li A et al (2015) Detection of a new luteovirus in imported nectarine trees: a case study to propose adoption of metagenomics in post-entry quarantine. Phytopathology 105:840–846

    Article  PubMed  Google Scholar 

  • Bai Y, Liang J, Liu R et al (2014) Metagenomic analysis reveals microbial diversity and function in the rhizosphere soil of a constructed wetland. Environ Technol 35:2521–2527

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Müller DB, Srinivas G et al (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–369

    Article  CAS  PubMed  Google Scholar 

  • Barry SM, Challis GL (2009) Recent advances in siderophore biosynthesis. Curr Opin Chem Biol 13:205–215

    Article  CAS  PubMed  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Bertaccini A, Duduk B, Paltrinieri S, Contaldo N (2014) Phytoplasmas and Phytoplasma diseases: a severe threat to agriculture. Am J Plant Sci 5:1763–1788

    Article  Google Scholar 

  • Besserer A, Puech-Pages V, Kiefer P et al (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:e226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blainey PC (2013) The future is now: single-cell genomics of bacteria and archaea. FEMS Microbiol Rev 37:407

    Article  CAS  PubMed  Google Scholar 

  • Bordenstein SR, Theis KR (2015) Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol 13:e1002226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bragina A, Maier S, Berg C et al (2012) Similar diversity of alphaproteobacteria and nitrogenase gene amplicons on two related Sphagnum mosses. Front Microbiol 2:275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bragina A, Berg C, Müller H (2013) Insights into functional bacterial diversity and its effect on Alpine bog ecosystem functioning. Sci Rep 3:1955

    Article  PubMed  Google Scholar 

  • Bragina A, Oberauner-Wappis L, Zachow C et al (2014) The Sphagnum microbiome supports ecosystem functioning under extreme conditions. Mol Ecol 23:4498–4510

    Article  CAS  PubMed  Google Scholar 

  • Bragina A, Berg C, Berg G (2015) The core microbiome bonds the Alpine bog vegetation to a transkingdom metacommunity. Mol Ecol 24:4795–4807

    Article  PubMed  Google Scholar 

  • Buee M, De Boer W, Martin F, van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189–212

    Article  CAS  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Garrido-Oter R, Münch PC et al (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17:392–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bush LP, Wilkinson HH, Schardl CL (1997) Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiol 114:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calheiros CSC, Duque AF, Moura A et al (2009) Substrate effect on bacterial communities from constructed wetlands planted with Typha latifolia treating industrial wastewater. Ecol Eng 35:744–753

    Article  Google Scholar 

  • Camerota C, Raddadi N, Pizzinat A et al (2012) Incidence of ‘Candidatus Liberibacter europaeus’ and phytoplasmas in Cacopsylla species (Hemiptera: Psyllidae) and their host/shelter plants. Phytoparasitica 40:213–221

    Article  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlier AL, Eberl L (2012) The eroded genome of a Psychotria leaf symbiont: hypotheses about lifestyle and interactions with its plant host. Environ Microbiol 14:2757–2769

    Article  CAS  PubMed  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790–803

    Article  CAS  PubMed  Google Scholar 

  • Charlop-Powers Z, Owen J, Reddy B et al (2015) Global biogeographic sampling of bacterial secondary metabolism. elife 4:e05048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng J, Pinnell L, Engel K, Neufeld JD, Charles TC (2014) Versatile broad-host-range cosmids for construction of high quality metagenomic libraries. J Microbiol Method 99:27–34

    Article  CAS  Google Scholar 

  • Chhabra S, Brazil D, Morrissey J et al (2013) Characterization of mineral phosphate solubilization traits from a barley rhizosphere soil functional metagenome. Microbiol Open 2:717–724

    CAS  Google Scholar 

  • Cobo-Díaz JF, Fernández-González AJ, Villadas PJ et al (2015) Metagenomic assessment of the potential microbial nitrogen pathways in the rhizosphere of a Mediterranean forest after a wildfire. Microb Ecol 69:895–904

    Article  PubMed  Google Scholar 

  • Compant S, Cement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Cretiou MS, Kielak AM, Abu Al-Soud W et al (2012) Mining of unexplored habitats for novel chitinases – chiA as a helper gene proxy in metagenomics. Appl Microbiol Biotechnol 94(5):1347–1358

    Article  CAS  Google Scholar 

  • Duan YP, Zhou LJ, Hall DG et al (2009) Complete genome sequence of citrus Huanglongbing bacterium, ‘Candidatus Liberibacter asiaticus’ obtained through metagenomics. Mol Plant-Microbe Interact 22:1011–1020

    Article  CAS  PubMed  Google Scholar 

  • Engel K, Pinnell L, Cheng J, Charles TC, Neufeld JD (2012) Nonlinear electrophoresis for purification of soil DNA for metagenomics. J Microbiol Method 88:35–40

    Article  CAS  Google Scholar 

  • Engel K, Ashby D, Brady SF et al (2013) Meeting report: 1st international functional metagenomics workshop May 7-8, 2012, St Jacobs, Ontario, Canada. Stand Genom Sci 8(1):106–111

    Article  Google Scholar 

  • Erlacher A, Cernava T, Cardinale M et al (2015) Rhizobiales as functional and endosymbiontic members in the lichen symbiosis of Lobaria pulmonaria L. Front Microbiol 6:53

    Article  PubMed  PubMed Central  Google Scholar 

  • Escobar MA, Dandekar AM (2003) Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci 8:380–386

    Article  CAS  PubMed  Google Scholar 

  • Fibach-Baldi S, Burdman S, Okon Y (2012) Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiol Lett 326:99–108

    Article  CAS  Google Scholar 

  • Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468

    Article  CAS  PubMed  Google Scholar 

  • Gilbert J, Li LL, Taghavi S et al (2012) Bioprospecting metagenomics for new glycoside hydrolases. Methods Mol Biol 908:141–151

    Article  CAS  PubMed  Google Scholar 

  • Grube M, Cernava T, Soh J et al (2015) Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative genomics. ISME J 9:412–424

    Article  CAS  PubMed  Google Scholar 

  • Guerriero G, Hausman JF, Strauss J et al (2015) Destructuring plant biomass: focus on fungal and extremophilic cell wall hydrolases. Plant Sci 234:180–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoshi A, Oshima K, Kakizawa S et al (2009) A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proc Natl Acad Sci U S A 106:6416–6421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imfeld G, Aragones CE, Fetzer I et al (2010) Characterization of microbial communities in the aqueous phase of a constructed model wetland treating 1,2-dichloroethene-contaminated groundwater. FEMS Microbiol Ecol 72:74–88

    Article  CAS  PubMed  Google Scholar 

  • Junker R, Loewel C, Gross R et al (2011) Composition of epiphytic bacterial communities differs on petals and leaves. Plant Biol 13:918

    Article  CAS  PubMed  Google Scholar 

  • Kakizawa S, Makino A, Ishii Y et al (2014) Draft genome sequence of “Candidatus Phytoplasma asteris” strain OY-V, an unculturable plant-pathogenic bacterium. Genome Announc 18:2

    Google Scholar 

  • Lebeis SL (2015) Greater than the sum of their parts: characterizing plant microbiomes at the community level. Curr Opin Plant Biol 24:82–86

    Article  CAS  PubMed  Google Scholar 

  • Lee SW, Kim HK, Lim HK et al (2004) Searching antimicrobial activities from plant rhizosphere metagenomics library. Phytopathology 94:S59

    Google Scholar 

  • Lee MH, Hong KS, Malhotra S et al (2010) A new esterase EstD2 isolated from plant rhizosphere soil metagenome. Appl Microbiol Biotechnol 88:1125–1134

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Ishiga Y, Clermont K, Mysore KS (2013) Coronatine inhibits stomatal closure and delays hypersensitive response cell death induced by non-host bacterial pathogens. PeerJ 1:e34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leininger S, Urich T, Schloter M et al (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Lou B, Glynn JM et al (2011) The complete genome sequence of ‘Candidatus Liberibacter solanacearum’, the bacterium associated with potato zebra chip disease. PLoS One 6(4):e19135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  CAS  PubMed  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin M, Biver S, Barbeyron T et al (2014) identification and characterization of a halotolerant, cold-active marine endo-ß-1,4-glucanase by using functional metagenomics of seaweed-associated microbiota. Appl Environ Microbiol 80:4958–4967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason CJ, Couture JJ, Raffa KF (2014) Plant-associated bacteria degrade defense chemicals and reduce their adverse effects on an insect defoliator. Oecologia 175:901–910

    Article  PubMed  Google Scholar 

  • McCormick SP (2013) Microbial detoxification of mycotoxins. J Chem Ecol 39:907–918

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Mitrovic J, Siewert C, Duduk B et al (2014) Generation and analysis of draft sequences of ‘Stolbur’ Phytoplasma from multiple displacement amplification templates. J Mol Microbiol Biotechnol 24:1–11

    Article  CAS  PubMed  Google Scholar 

  • Mitter B, Petric A, Shin MW et al (2013a) Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front Plant Sci 4:120

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitter B, Brader G, Afzal M et al (2013b) Advances in elucidating plant-soil-microbe (bacteria) interactions. Adv Agronomy 121:381–445

    Article  CAS  Google Scholar 

  • Morohoshi T, Oikawa M, Sato S et al (2011) Isolation and characterization of novel lipases from a metagenomic library of the microbial community in the pitcher fluid of the carnivorous plant Nepenthes hybrida. J Biosci Bioeng 112:315–320

    Article  CAS  PubMed  Google Scholar 

  • Moubayidin L, Di Mambro R, Sabatini S (2009) Cytokinin-auxin crosstalk. Trends Plant Sci 14:557–562

    Article  CAS  PubMed  Google Scholar 

  • Neufeld J, Engel K, Cheng J et al (2011) Open resource metagenomics: a model for sharing metagenomic libraries. Stand Genom Sci 5(2):203–210

    Article  CAS  Google Scholar 

  • Nikolic B, Schwab H, Sessitsch A (2011) Metagenomic analysis of the 1-aminocyclopropane-1-carboxylate deaminase gene (acdS) operon of an uncultured bacterial endophyte colonizing Solanum tuberosum L. Arch Microbiol 193:665–676

    Article  CAS  PubMed  Google Scholar 

  • Ofek-Lalzar M, Sela N, Goldman-Voronov M et al (2014) Niche and host-associated functional signatures of the root surface microbiome. Nat Commun 5:4950

    Article  CAS  PubMed  Google Scholar 

  • Osbourn AE, Qi X, Townsend B, Qin B (2003) Dissecting plant secondary metabolism - constitutive chemical defenses in cereals. New Phytol 159:101–108

    Article  CAS  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Peiffer JA, Spor A, Koren O et al (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci U S A 110:6548–6553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porazinska DL, Morgan MJ, Gaspar JM et al (2014) Discrimination of plant-parasitic nematodes from complex soil communities using ecometagenetics. Phytopathology 104:749–761

    Article  PubMed  Google Scholar 

  • Puspita ID, Kamagata Y, Tanaka M, Asano K, Nakatsu CH (2012) Are uncultivated bacteria really uncultivable? Microbes Environ 27:356–366

    Article  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Puebla ST, Servin-Garciduenas LE, Jimenez-Marin B et al (2013) Gut and root microbiota commonalities. Appl Environ Microbiol 79:2–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasche F, Hödl V, Poll C et al (2006a) Rhizosphere bacteria affected by transgenic potatoes with antibacterial activities in comparison to effects of soil, wildtype potatoes, vegetation stage and pathogen exposure. FEMS Microbiol Ecol 56:219–235

    Article  CAS  PubMed  Google Scholar 

  • Rasche F, Velvis H, Zachow C et al (2006b) Impact of transgenic potatoes expressing antibacterial agents on bacterial endophytes is comparable to effects of wildtype potatoes and changing environmental conditions. J Appl Ecol 43:555–566

    Article  CAS  Google Scholar 

  • Rastogi G, Coaker GL, Leveau JHJ (2013) New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol Lett 348:1–10

    Article  CAS  PubMed  Google Scholar 

  • Roossinck MJ, Martin DP, Roumagnac P (2015) Plant virus metagenomics: advances in virus discovery. Phytopathology 105:716–727

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg E, Sharon G, Zilber-Rosenberg I (2009) The hologenome theory of evolution contains Lamarckian aspects within a Darwinian framework. Environ Microbiol 11:2959–2962

    Article  PubMed  Google Scholar 

  • Ryan RP, Monchy S, Cardinale M et al (2009) The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7:514–525

    Article  CAS  PubMed  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  CAS  PubMed  Google Scholar 

  • Sessitsch A, Hardoim P, Döring J et al (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microb Interact 25:28–36

    Article  CAS  Google Scholar 

  • Siewert C, Luge T, Duduk B et al (2014) Analysis of expressed genes of the bacterium Candidatus Phytoplasma Mali: highlights key features of virulence and metabolism. PLoS One 9:e94391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh S (2014) A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress. J Appl Microbiol 117:1221–1244

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Sarma BK, Harikesh B, Upadhyay RS (2014) Trichoderma: a silent worker of plant rhizosphere. In: Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Ruohy MG (eds) Biotechnology and biology of Trichoderma. Elsevier, The Netherlands, pp 533–542

    Chapter  Google Scholar 

  • Singh RP, Kumari P, Reddy CRK (2015) Antimicrobial compounds from seaweeds-associated bacteria and fungi. Appl Microbiol Biotechnol 99:1571–1586

    Article  CAS  PubMed  Google Scholar 

  • Souza RC, Cantão ME, Ribeiro Vasconcelos AT et al (2013) Soil metagenomics reveals differences under conventional and no-tillage with crop rotation or succession. Appl Soil Ecol 72:49–61

    Article  Google Scholar 

  • Stottmeister U, Wissner A, Kuschk P et al (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22:93–117

    Article  CAS  PubMed  Google Scholar 

  • Suzaki T, Ito M, Kawaguchi M (2013) Genetic basis of cytokinin and auxin functions during root nodule development. Front Plant Science 4:42

    Article  Google Scholar 

  • Swain SM, Singh DP (2005) Tall tales from sly dwarves: novel functions of gibberellins in plant development. Trends Plant Sci 10:123–129

    Article  CAS  PubMed  Google Scholar 

  • Toth IK, Bell KS, Holeva MC, Birch PR (2003) Soft rot Erwiniae: from genes to genomes. Mol Plant Pathol 4:17–30

    Article  CAS  PubMed  Google Scholar 

  • Tsurumaru H, Okubo T, Okazaki K et al (2015) Metagenomic analysis of the bacterial community associated with the taproot of sugar beet. Microbes Environ 30:63–69

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner TR, Ramakrishnan K, Walshaw J et al (2013) Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J 7:2248–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud M-L et al (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    Article  PubMed  PubMed Central  Google Scholar 

  • Vadassery J, Ritter C, Venus Y et al (2008) The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Mol Plant-Microbe Interact 21:1371–1383

    Article  CAS  PubMed  Google Scholar 

  • Verastegui Y, Cheng J, Engel K et al (2014) Multisubstrate isotope labeling and metagenomic analysis of active soil bacterial communities. MBio 5:e01157-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vey G, Charles TC (2014). MetaProx: the database of metagenomic proximons. Database 2014:ID bau097

    Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    Article  CAS  PubMed  Google Scholar 

  • Vorwerk S, Somerville S, Somerville C (2004) The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Sci 9:203–209

    Article  CAS  PubMed  Google Scholar 

  • Weinert N, Piceno Y, Ding GC et al (2011) PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa. FEMS Microbiol Ecol 75:497–506

    Article  CAS  PubMed  Google Scholar 

  • Yang CH, Crowley DE, Borneman J, Keen NT (2001) Microbial phyllosphere populations are more complex than previously realized. Proc Natl Acad Sci U S A 98:3889–3894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yilmaz S, Singh AK (2012) Single cell genome sequencing. Curr Opin Biotechnol 23:437–443

    Article  CAS  PubMed  Google Scholar 

  • Zarraonaindia I, Owens SM, Weisenhorn P et al (2015) The soil microbiome influences grapevine-associated microbiota. MBio 6:e02527-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zuccaro A, Schoch CL, Spatafora JW et al (2008) Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus. Appl Environ Microbiol 74:931–941

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Brader .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Brader, G., Corretto, E., Sessitsch, A. (2017). Metagenomics of Plant Microbiomes. In: Charles, T., Liles, M., Sessitsch, A. (eds) Functional Metagenomics: Tools and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-61510-3_11

Download citation

Publish with us

Policies and ethics