Skip to main content

The Mathematical Theories of Diffusion: Nonlinear and Fractional Diffusion

  • Chapter
  • First Online:
Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2186))

Abstract

We describe the mathematical theory of diffusion and heat transport with a view to including some of the main directions of recent research. The linear heat equation is the basic mathematical model that has been thoroughly studied in the last two centuries. It was followed by the theory of parabolic equations of different types. In a parallel development, the theory of stochastic partial differential equations gives a foundation to the probabilistic study of diffusion.

Nonlinear diffusion equations have played an important role not only in theory but also in physics and engineering, and we focus on a relevant aspect, the existence and propagation of free boundaries. Due to our research, we use the porous medium and fast diffusion equations as case examples.

A large part of the paper is devoted to diffusion driven by fractional Laplacian operators and other nonlocal integro-differential operators representing nonlocal, long-range diffusion effects. Three main models are examined (one linear, two nonlinear), and we report on recent progress in which the author is involved.

To appear in Springer Lecture Notes in Mathematics, C.I.M.E. Subseries, 2017.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly speaking, priority goes to the latter, but the methods were different.

  2. 2.

    Nash and Nirenberg shared the Abel Prize for 2015.

  3. 3.

    Also called interface in the literature.

  4. 4.

    In [253] they were called Type I and Type II in reverse order.

References

  1. N. Alibaud, S. Cifani, E. Jakobsen, Continuous dependence estimates for nonlinear fractional convection-diffusion equations. SIAM J. Math. Anal. 44, 603–632 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Allen, L. Caffarelli, A. Vasseur, Porous medium flow with both a fractional potential pressure and fractional time derivative. Chin. Ann. Math. Ser. B 38(1), 45–82 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Alphonse, C.M. Elliott, Well-posedness of a fractional porous medium equation on an evolving surface. Nonlinear Anal. 137, 3–42 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Ambrosio, S. Serfaty, A gradient flow approach to an evolution problem arising in superconductivity. Commun. Pure Appl. Math. 61(11), 1495–1539 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Ambrosio, N. Gigli, G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edn. (Birkhäuser, Basel, 2008)

    MATH  Google Scholar 

  6. L. Ambrosio, E. Mainini, S. Serfaty, Gradient flow of the Chapman-Rubinstein-Schatzman model for signed vortices. Ann. IHP, Analyse Non linéaire 28(2), 217–246 (2011)

    Google Scholar 

  7. F. Andreu, J.M. Mazón, J. Rossi, J. Toledo, Nonlocal Diffusion Problems. Mathematical Surveys and Monographs, vol. 165 (American Mathematical Society, Providence, RI, 2010)

    Google Scholar 

  8. F. Andreu-Vaillo, V. Caselles, J. Mazón, Parabolic Quasilinear Equations Minimizing Linear Growth Functionals. Progress in Mathematics, vol. 223 (Birkhäuser Verlag, Basel, 2004)

    Google Scholar 

  9. S.B. Angenent, D.G. Aronson, The focusing problem for the radially symmetric porous medium equation. Commun. Partial Differ. Equ. 20, 1217–1240 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 116 (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  11. A. Arnold, P. Markowich, G. Toscani, A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Commun. Partial Differ. Equ. 26(1–2), 43–100 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. D.G. Aronson, The porous medium equation, in Nonlinear Diffusion Problems (Montecatini Terme, 1985). Lecture Notes in Mathematics, vol. 1224 (Springer, Berlin, 1986), pp. 1–46

    Google Scholar 

  13. D.G. Aronson, P. Bénilan, Régularité des solutions de l’équation des milieux poreux dans R n. C. R. Acad. Sci. Paris Ser. A-B 288, 103–105 (1979)

    MathSciNet  MATH  Google Scholar 

  14. D.G. Aronson, J.A. Graveleau, Self-similar solution to the focusing problem for the porous medium equation. Eur. J. Appl. Math. 4(1), 65–81 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. D.G. Aronson, J. Serrin, Local behavior of solutions of quasilinear parabolic equations. Arch. Ration. Mech. Anal. 25, 81–122 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  16. D.G. Aronson, J.L. Vázquez, Anomalous exponents in nonlinear diffusion. J. Nonlinear Sci. 5(1), 29–56 (1995)

    MathSciNet  MATH  Google Scholar 

  17. D.G. Aronson, H.F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial Differential Equations and Related Topics. Lecture Notes in Mathematics, vol. 446 (Springer, Berlin, 1975), pp. 5–49

    Google Scholar 

  18. D.G. Aronson, H.F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30(1), 33–76 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. D.G. Aronson, L.A. Caffarelli, J.L. Vazquez, Interfaces with a corner point in one-dimensional porous medium flow. Commun. Pure Appl. Math. 38(4), 375–404 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. D.G. Aronson, O. Gil, J.L. Vázquez, Limit behaviour of focusing solutions to nonlinear diffusions. Commun. Partial Differ. Equ. 23(1–2), 307–332 (1998)

    MathSciNet  MATH  Google Scholar 

  21. I. Athanasopoulos, L.A. Caffarelli, Continuity of the temperature in boundary heat control problem. Adv. Math. 224(1), 293–315 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Audrito, J.L. Vázquez, The Fisher-KPP problem with doubly nonlinear diffusion. arxiv:1601.05718v2 [math.AP]

    Google Scholar 

  23. G.I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics (Cambridge University Press, Cambridge, 1996). Updated version of Similarity, Self-Similarity, and Intermediate Asymptotics (Consultants Bureau, New York, 1979)

    Google Scholar 

  24. B. Barrios, I. Peral, F. Soria, E. Valdinoci, A Widder’s type theorem for the heat equation with nonlocal diffusion. Arch. Ration. Mech. Anal. 213(2), 629–650 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. R.F. Bass, Diffusions and Elliptic Operators. Probability and Its Applications (Springer, New York, 1998)

    Google Scholar 

  26. P. Bénilan, H. Brezis, M.G. Crandall, A semilinear equation in L 1(R N). Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2, 523–555 (1975)

    Google Scholar 

  27. J.G. Berryman, C.J. Holland, Nonlinear diffusion problem arising in plasma physics. Phys. Rev. Lett. 40, 1720–1722 (1978)

    Article  MathSciNet  Google Scholar 

  28. J. Bertoin, Lévy Processes. Cambridge Tracts in Mathematics, vol. 121 (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  29. A. Bertozzi, T. Laurent, F. Léger, Aggregation via Newtonian potential and aggregation patches. M3AS 22(suppl. 1), 1140005, 39 pp. (2012)

    Google Scholar 

  30. P. Biler, G. Wu, Two-dimensional chemotaxis models with fractional diffusion. Math. Methods Appl. Sci. 32(1), 112–126 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. P. Biler, G. Karch, R. Monneau, Nonlinear diffusion of dislocation density and self-similar solutions. Commun. Math. Phys. 294(1), 145–168 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. P. Biler, C. Imbert, G. Karch, Barenblatt profiles for a nonlocal porous medium equation. C.R. Math. 349(11), 641–645 (2011)

    Google Scholar 

  33. P. Biler, C. Imbert, G. Karch, Nonlocal porous medium equation: Barenblatt profiles and other weak solutions. Arch. Ration. Mech. Anal. 215(2), 497–529 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. C. Bjorland, L. Caffarelli, A. Figalli, Non-local gradient dependent operators. Adv. Math. 230(4–6), 1859–1894 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo, J.L. Vázquez, Asymptotics of the fast diffusion equation via entropy estimates. Arch. Rat. Mech. Anal. 191, 347–385 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. R.M. Blumenthal, R.K. Getoor, Some theorems on stable processes. Trans. Am. Math. Soc. 95(2), 263–273 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  37. K. Bogdan, K. Burdzy, Z.-Q. Chen, Censored stable processes. Probab. Theory Relat. Fields 127, 89–152 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Bonforte, A. Figalli, Total variation flow and sign fast diffusion in one dimension. J. Differ. Equ. 252(8), 4455–4480 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Bonforte, G. Grillo, Asymptotics of the porous media equation via Sobolev inequalities. J. Funct. Anal. 225(1), 33–62 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Bonforte, J.L. Vázquez, Global positivity estimates and Harnack inequalities for the fast diffusion equation. J. Funct. Anal. 240(2), 399–428 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Bonforte, J.L. Vázquez, Positivity, local smoothing, and Harnack inequalities for very fast diffusion equations. Adv. Math. 223(2), 529–578 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Bonforte, J.L. Vázquez, Quantitative local and global a priori estimates for fractional nonlinear diffusion equations. Adv. Math. 250, 242–284 (2014). arXiv:1210.2594

    Google Scholar 

  43. M. Bonforte, J.L. Vázquez, A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains. Arch. Ration. Mech. Anal. 218(1), 317–362 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Bonforte, J.L. Vázquez, A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains. Part I. Existence, uniqueness and upper bounds. Nonlinear Anal. 131, 363–398 (2016)

    Google Scholar 

  45. M. Bonforte, J. Dolbeault, G. Grillo, J.L. Vázquez, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities. Proc. Natl. Acad. Sci. USA 107(38), 16459–16464 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Bonforte, G. Grillo, J.L. Vázquez, Special fast diffusion with slow asymptotics: entropy method and flow on a Riemann manifold. Arch. Ration. Mech. Anal. 196(2), 631–680 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. M. Bonforte, Y. Sire, J.L. Vázquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete Contin. Dyn. Syst. A 35(12), 5725–5767 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Bonforte, A. Segatti, J.L. Vázquez, Non-existence and instantaneous extinction of solutions for singular nonlinear fractional diffusion equations. Calc. Var. Partial Differ. Equ. 55(3), 23 pp. (2016) Art. 68

    Google Scholar 

  49. M. Bonforte, A. Figalli, X. Ros-Otón, Infinite speed of propagation and regularity of solutions to the fractional porous medium equation in general domains. Commun. Pure Appl. Math. 70(8), 1472–1508 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. M. Bonforte, A. Figalli, J.L. Vázquez, Sharp global estimates for local and nonlocal porous medium-type equations in bounded domains. arXiv:1610.09881

    Google Scholar 

  51. M. Bonforte, Y. Sire, J.L. Vázquez, Optimal existence and uniqueness theory for the fractional heat equation. Nonlinear Anal. 153, 142–168 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  52. N. Bournaveas, V. Calvez, The one-dimensional Keller-Segel model with fractional diffusion of cells. Nonlinearity 23(4), 923–935 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. J. Boussinesq, Recherches théoriques sur l’écoulement des nappes d’eau infiltrées dans le sol et sur le débit des sources. Comp. Rend. Acad. Sci. J. Math. Pure. Appl. 10, 5–78 (1903/1904)

    MATH  Google Scholar 

  54. C. Brändle, A. de Pablo, Nonlocal heat equations: decay estimates and Nash inequalities. arXiv:1312.4661

    Google Scholar 

  55. C. Brändle, J.L. Vázquez, Viscosity solutions for quasilinear degenerate parabolic equations of porous medium type. Indiana Univ. Math. J. 54(3), 817–860 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  56. C. Brändle, E. Colorado, A. de Pablo, U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 143(1), 39–71 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  57. R. Brown, A brief account of microscopical observations …. Philos. Mag. 4, 161–173 (1828)

    Google Scholar 

  58. C. Bucur, E. Valdinoci, Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana, vol. 20 (Springer; Unione Matematica Italiana, Bologna, 2016)

    Google Scholar 

  59. X. Cabré, L. Caffarelli, Fully Nonlinear Elliptic Equations (American Mathematical Society, Providence, RI, 1995)

    MATH  Google Scholar 

  60. X. Cabré, J.M. Roquejoffre, Propagation de fronts dans les équations de Fisher-KPP avec diffusion fractionnaire. C. R. Math. Acad. Sci. Paris 347(23–24), 1361–1366 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  61. X. Cabré, J.M. Roquejoffre, The influence of fractional diffusion in Fisher-KPP equations. Commun. Math. Phys. 320(3), 679–722 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  62. X. Cabré, J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224(5), 2052–2093 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  63. L.A. Caffarelli, The obstacle problem, Lezioni Fermiane. [Fermi Lectures] Acc. Nazionale dei Lincei; Scuola Normale Superiore, Pisa (1998)

    Google Scholar 

  64. L.A. Caffarelli, Non-local diffusions, drifts and games, in Nonlinear Partial Differential Equations. Abel Symposium, vol. 7 (Springer, Heidelberg, 2012), pp. 37–52

    Google Scholar 

  65. L.A. Caffarelli, A. Friedman, Continuity of the density of a gas flow in a porous medium. Trans. Am. Math. Soc. 252, 99–113 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  66. L.A. Caffarelli, S. Salsa, A Geometric Approach to Free Boundary Problems (American Mathematical Society, Providence, RI, 2005)

    Book  MATH  Google Scholar 

  67. L.A. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  68. L.A. Caffarelli, A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171, 1903–1930 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  69. L. Caffarelli, J.L. Vázquez, Viscosity solutions for the porous medium equation, in Differential Equations: La Pietra 1996 (Florence). Proceedings of Symposia in Pure Mathematics, vol. 65 (American Mathematical Society, Providence, 1999), p. 1326

    Google Scholar 

  70. L.A. Caffarelli, J.L. Vázquez, Nonlinear porous medium flow with fractional potential pressure. Arch. Ration. Mech. Anal. 202, 537–565 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  71. L.A. Caffarelli, J.L. Vázquez, Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete Contin. Dyn. Syst. A 29(4), 1393–1404 (2011)

    MathSciNet  MATH  Google Scholar 

  72. L.A. Caffarelli, N.I. Wolanski, C 1,α regularity of the free boundary for the N-dimensional porous media equation. Commun. Pure Appl. Math. 43, 885–902 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  73. L.A. Caffarelli, J.L. Vázquez, N.I. Wolanski, Lipschitz continuity of solutions and interfaces of the N-dimensional porous medium equation, Indiana Univ. Math. J. 36, 373–401 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  74. L. Caffarelli, C.H. Chan, A. Vasseur, Regularity theory for parabolic nonlinear integral operators. J. Am. Math. Soc. 24(3), 849–869 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  75. L.A. Caffarelli, F. Soria, J.L. Vázquez, Regularity of solutions of the fractional porous medium flow. J. Eur. Math. Soc. 15(5), 1701–1746 (2013). arXiv 1201.6048v1 (2012)

    Google Scholar 

  76. V. Calvez, J. A. Carrillo, F. Hoffmann, The geometry of diffusing and self-attracting particles in a one-dimensional fair-competition regime, Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions (Springer, Berlin, 2017)

    Google Scholar 

  77. M. Caputo, Linear model of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13(5), 529–539 (1967)

    Article  Google Scholar 

  78. J.A. Carrillo, G. Toscani, Asymptotic L 1-decay of solutions of the porous medium equation to self-similarity. Indiana Univ. Math. J. 49, 113–141 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  79. J.A. Carrillo, A. Jüngel, P.A. Markowich, G. Toscani, A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatsh. Math. 133(1), 1–82 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  80. J.A. Carrillo, Y. Huang, M.C. Santos, J.L. Vázquez, Exponential convergence towards stationary states for the 1D porous medium equation with fractional pressure J. Differ. Equ. 258(3), 736–763 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  81. A. Castro, D. Córdoba, Global existence, singularities and ill-posedness for a nonlocal flux, Adv. Math. 219 (6), 1916–1936 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  82. A. Castro, D. Córdoba, F. Gancedo, R. Orive, Incompressible flow in porous media with fractional diffusion. Nonlinearity 22 (8), 1791–1815 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  83. A. Chang, M.D.M. González, Fractional Laplacian in conformal geometry. Adv. Math. 226(2), 1410–1432 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  84. H. Chang-Lara, G. Dávila, Regularity for solutions of nonlocal parabolic equations II. J. Differ. Equ. 256(1), 130–156 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  85. E. Chasseigne, J.L. Vázquez, Theory of extended solutions for fast-diffusion equations in optimal classes of data. Radiation from singularities. Arch. Ration. Mech. Anal. 164(2), 133–187 (2002)

    Article  MATH  Google Scholar 

  86. Z.Q. Chen, R. Song, Two-sided eigenvalue estimates for subordinate processes in domains, J. Funct. Anal. 226 (1), 90–113 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  87. Z.Q. Chen, P. Kim, R. Song, Heat kernel estimates for the Dirichlet fractional Laplacian. J. Eur. Math. Soc. 12(5), 1307–1329 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  88. Z.Q. Chen, P. Kim, R. Song, Two-sided heat kernel estimates for censored stable-like processes. Probab. Theory Relat. Fields 146(3–4), 361–399 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  89. B. Chow, P. Lu, L. Ni, Hamilton’s Ricci Flow. Graduate Studies in Mathematics, vol. 77 (American Mathematical Society, Providence, RI; Science Press Beijing, New York, 2006)

    Google Scholar 

  90. S. Cifani, E.R. Jakobsen, Entropy solution theory for fractional degenerate convection-diffusion equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(3), 413–441 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  91. R. Cont, P. Tankov, Financial Modelling with Jump Processes (Chapman & Hall/CRC, Boca Raton, 2004)

    Google Scholar 

  92. M. Cozzi, A. Figalli, Regularity theory for local and nonlocal minimal surfaces: an overview, in Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions (Springer, Berlin, 2017)

    Google Scholar 

  93. M.G. Crandall, T.M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces. Am. J. Math. 93, 265–298 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  94. M.G. Crandall, L.C. Evans, P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 282(2), 487–502 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  95. J. Crank, The Mathematics of Diffusion, 2nd edn. (Clarendon Press, Oxford, 1975)

    MATH  Google Scholar 

  96. J. Crank, Free and Moving Boundary Problems (The Clarendon Press, Oxford University Press, New York, 1987)

    MATH  Google Scholar 

  97. N. Cusimano, F. Del Teso, L. Gerardo-Giorda, G. Pagnini, Discretizations of the spectral fractional Laplacian on general domains with Dirichlet, Neumann, and Robin boundary conditions. Preprint (2017)

    Google Scholar 

  98. H. Darcy, Les Fontaines Publiques de la ville de Dijon (V. Dalmont, Paris, 1856), pp. 305–401

    Google Scholar 

  99. P. Daskalopoulos, C. Kenig, Degenerate Diffusions. Initial Value Problems and Local Regularity Theory. EMS Tracts in Mathematics, vol. 1 (European Mathematical Society (EMS), Zürich, 2007)

    Google Scholar 

  100. P. Daskalopoulos, Y. Sire, J.L. Vázquez, Weak and smooth solutions for a fractional Yamabe flow: the case of general compact and locally conformally flat manifolds. Communications in Partial Differential Equations (to appear)

    Google Scholar 

  101. E.B. Davies, Heat kernel bounds for second order elliptic operators on Riemannian manifolds. Am. J. Math. 109(3), 545–569 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  102. E.B. Davies, Heat Kernels and Spectral Theory Cambridge Tracts in Mathematics, vol. 92 (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  103. E. De Giorgi, Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. (Italian) Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3, 25–43 (1957)

    Google Scholar 

  104. A. de Pablo, A. Sánchez, Travelling wave behaviour for a porous-Fisher equation. Eur. J. Appl. Math. 9(3), 285–304 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  105. A. de Pablo, J.L. Vázquez, Travelling waves and finite propagation in a reaction-diffusion equation. J. Differ. Equ. 93(1), 19–61 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  106. A. De Pablo, F. Quirós, A. Rodríguez, J.L. Vázquez, A fractional porous medium equation. Adv. Math. 226(2), 1378–1409 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  107. A. De Pablo, F. Quirós, A. Rodríguez, J.L. Vázquez, A general fractional porous medium equation. Commun. Pure Appl. Math. 65(9), 1242–1284 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  108. A. de Pablo, F. Quirós, A. Rodríguez, J.L. Vázquez, Classical solutions for a logarithmic fractional diffusion equation. J. Math. Pures Appl. (9) 101(6), 901–924 (2014)

    Google Scholar 

  109. A. De Pablo, F. Quirós, A. Rodríguez, Nonlocal filtration equations with rough kernels. Nonlinear Anal. TMA 137, 402–425 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  110. M. del Pino, Bubbling blow-up in critical parabolic problems, in Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions (Springer, Berlin, 2017)

    Google Scholar 

  111. F. del Teso, Finite difference method for a fractional porous medium equation. Calcolo 51(4), 615–638 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  112. F. del Teso, J. Endal, E.R. Jakobsen, Uniqueness and properties of distributional solutions of nonlocal equations of porous medium type. Adv. Math. 305, 78–143 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  113. J.I. Díaz, Nonlinear partial differential equations and free boundaries. Vol. I. Elliptic equations. Research Notes in Mathematics, vol. 106 (Pitman Advanced Publishing Program, Boston, MA, 1985)

    Google Scholar 

  114. E. diBenedetto, Degenerate Parabolic Equations. Series Universitext (Springer, New York, 1993)

    Google Scholar 

  115. E. DiBenedetto, U. Gianazza, V. Vespri, Harnack’s Inequality for Degenerate and Singular Parabolic Equations. Springer Monographs in Mathematics (Springer, New York, 2012)

    Google Scholar 

  116. E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Preprint (2011)

    Google Scholar 

  117. S. Dipierro, E. Valdinoci, A simple mathematical model inspired by the Purkinje cells: from delayed travelling waves to fractional diffusion. arXiv:1702.05553

    Google Scholar 

  118. C.M. Elliott, V. Janovský, An error estimate for a finite-element approximation of an elliptic variational inequality formulation of a Hele-Shaw moving-boundary problem. IMA J. Numer. Anal. 3(1), 1–9 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  119. C. Escudero, The fractional Keller-Segel model. Nonlinearity 19 (12), 2909–2918 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  120. L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, vol. 19 (American Mathematical Society, Providence, RI, 1998)

    Google Scholar 

  121. L.C. Evans, The 1-Laplacian, the -Laplacian and differential games. Perspectives in nonlinear partial differential equations. Contemporary Mathematics, vol. 446, (American Mathematical Society, Providence, RI, 2007), pp. 245–254

    Google Scholar 

  122. L.C. Evans, An introduction to Stochastic Differential Equations (American Mathematical Society, Providence, RI, 2013)

    Book  MATH  Google Scholar 

  123. E.B. Fabes, C.E. Kenig, R.P. Serapioni, The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Equ. 7(1), 77–116 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  124. P. Fabrie, Solutions fortes et comportement asymptotique pour un modèle de convection naturelle en milieu poreux (French) Acta Appl. Math. 7, 49–77 (1986)

    MATH  Google Scholar 

  125. M. Felsinger, M. Kassmann, Local regularity for parabolic nonlocal operators. Commun. Partial Differ. Equ. 38(9), 1539–1573 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  126. A. Fick, Ueber diffusion (in German) [On Diffusion]. Ann. Phys. 94, 59–86 (1855)

    Article  Google Scholar 

  127. R.A. Fisher, The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937)

    Article  MATH  Google Scholar 

  128. J. Fourier, Théorie analytique de la Chaleur; reprint of the 1822 original: Éditions Jacques Gabay, Paris, 1988. English version: The Analytical Theory of Heat (Dover, New York, 1955)

    Google Scholar 

  129. A. Friedman, Partial Differential Equations of Parabolic Type (Prentice-Hall, Englewood Cliffs, NJ, 1964)

    MATH  Google Scholar 

  130. A. Friedman, Stochastic Differential Equations and Applications, vols. 1–2 (Academic, New York, 1976)

    MATH  Google Scholar 

  131. A. Friedman, Variational Principles and Free Boundaries (Wiley, New York, 1982)

    MATH  Google Scholar 

  132. A. Friedman, S. Kamin, The asymptotic behavior of gas in an N-dimensional porous medium. Trans. Am. Math. Soc. 262, 551–563 (1980)

    MathSciNet  MATH  Google Scholar 

  133. H. Fujita, On the blowing up of solutions of the Cauchy problem for \(u_{t} = \Delta u + u^{1+\alpha }\). J. Fac. Sci. Tokyo Sect. IA Math. 13, 109–124 (1966)

    MATH  Google Scholar 

  134. V.A. Galaktionov, J.L. Vázquez, Continuation of blowup solutions of nonlinear heat equations in several space dimensions. Commun. Pure Appl. Math. 50(1), 1–67 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  135. V.A. Galaktionov, J.L. Vázquez, The problem of blow-up in nonlinear parabolic equations. Current developments in partial differential equations (Temuco, 1999). Discrete Contin. Dyn. Syst. 8(2), 399–433 (2002)

    Google Scholar 

  136. G. Giacomin, J.L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits. J. Stat. Phys. 87 (1–2), 37–61 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  137. G. Giacomin, J.L. Lebowitz, R. Marra, Macroscopic evolution of particle systems with short and long-range interactions. Nonlinearity 13(6), 2143–2162 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  138. I.I. Gihman, A.V. Skorohod, The Theory of Stochastic Processes. III. Grundlehren der Mathematischen Wissenschaften, vol. 232 (Springer, Berlin, 1979) [Russian Edition 1975]

    Google Scholar 

  139. D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer, Berlin, 1988)

    MATH  Google Scholar 

  140. G. Gilboa, S. Osher, Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  141. M.D.M. González, Recent progress on the fractional Laplacian in conformal geometry. arxiv:1609.08988v1

    Google Scholar 

  142. M.D.M. González, J. Qing, Fractional conformal Laplacians and fractional Yamabe problems. Anal. Partial Differ. Equ. 6(7), 1535–1576 (2013)

    MathSciNet  MATH  Google Scholar 

  143. A.A. Grigor’yan, On the fundamental solution of the heat equation on an arbitrary Riemannian manifold. (Russian) Mat. Zametki 41 (5), 687–692, 765 (1987). English translation: Math. Notes 41(5–6), 386–389 (1987)

    Google Scholar 

  144. A.A. Grigor’yan, Heat kernels on weighted manifolds and applications. Contemp. Math. 398, 93–191 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  145. G. Grillo, M. Muratori, Radial fast diffusion on the hyperbolic space. Proc. Lond. Math. Soc. (3) 109(2), 283–317 (2014)

    Google Scholar 

  146. G. Grillo, M. Muratori, M.M. Porzio, Porous media equations with two weights: smoothing and decay properties of energy solutions via Poincaré inequalities. Discrete Contin. Dyn. Syst. 33(8), 3599–3640 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  147. G. Grillo, M. Muratori, F. Punzo, Fractional porous media equations: existence and uniqueness of weak solutions with measure data. Calc. Var. Partial Differ. Equ. 54(3), 3303–3335 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  148. G. Grillo, M. Muratori, J.L. Vázquez, The porous medium equation on Riemannian manifolds with negative curvature. The large-time behaviour. arXiv:1604.06126 [math.AP]

    Google Scholar 

  149. Q.Y. Guan, Z.M. Ma, Reflected symmetric α-stable processes and regional fractional Laplacian. Probab. Theory Relat. Fields 134, 649–694 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  150. M.E. Gurtin, R.C. MacCamy, On the diffusion of biological populations. Math. Biosci. 33(1–2), 35–49 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  151. R.S. Hamilton, The Ricci flow on surfaces. Contemp. Math. 71, 237–262 (1988)

    Article  MathSciNet  Google Scholar 

  152. A.K. Head, Dislocation group dynamics II. Similarity solutions of the continuum approximation. Philos. Mag. 26, 65–72 (1972)

    Google Scholar 

  153. H.S. Hele-Shaw, The flow of water. Nature 58, 34–36 (1898)

    Article  Google Scholar 

  154. M.A. Herrero, J.J.L. Velázquez, A blow-up mechanism for a chemotaxis model. Ann. Sc. Norm. Super. Pisa. Cl. Sci. IV 24(4), 633–683 (1997)

    MathSciNet  MATH  Google Scholar 

  155. S.D. Howison, Complex variable methods in Hele-Shaw moving boundary problems. Eur. J. Appl. Math. 3, 209–224 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  156. Y.H. Huang, Explicit Barenblatt profiles for fractional porous medium equations. Bull. Lond. Math. Soc. 4(46), 857–869 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  157. R. Hynd, E. Lindgren, Hölder estimates and large time behavior for a nonlocal doubly nonlinear evolution. Anal. Partial Differ. Equ. 9(6), 1447–1482 (2016)

    MATH  Google Scholar 

  158. R.G. Iagar, A. Sánchez, J.L. Vázquez, Radial equivalence for the two basic nonlinear degenerate diffusion equations. J. Math. Pures Appl. (9) 89(1), 1–24 (2008)

    Google Scholar 

  159. M. Jara, Hydrodynamic limit of particle systems with long jumps. http://arxiv.org/abs/0805.1326v2

  160. M.D. Jara, T. Komorowski, S. Olla, Limit theorems for additive functionals of a Markov chain. Ann. Appl. Probab. 19(6), 2270–2300 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  161. M. Jara, C. Landim, S. Sethuraman, Nonequilibrium fluctuations for a tagged particle in mean-zero one-dimensional zero-range processes. Probab. Theory Relat. Fields 145, 565–590 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  162. T.L. Jin, J.G. Xiong, A fractional Yamabe ow and some applications. J. Reine Angew. Math. 696, 187–223 (2014)

    MathSciNet  MATH  Google Scholar 

  163. A. Jüngel, Cross diffusions, Chap. 4 in Entropy Methods for Diffusive Partial Differential Equations. Springer Briefs in Mathematics (Springer, Cham, 2016)

    Google Scholar 

  164. S. Kamenomostskaya (Kamin), On the Stefan problem. Mat. Sb. 53, 489–514 (1961)

    Google Scholar 

  165. S. Kamin, P. Rosenau, Propagation of thermal waves in an inhomogeneous medium. Commun. Pure Appl. Math. 34, 831–852 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  166. S. Kamin, J.L. Vázquez, Fundamental solutions and asymptotic behaviour for the p-Laplacian equation. Rev. Mat. Iberoam. 4(2), 339–354 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  167. S. Kamin, G. Reyes, J.L. Vázquez, Long time behavior for the inhomogeneous PME in a medium with rapidly decaying density. Discrete Contin. Dyn. Syst. 26, 521–549 (2010)

    MathSciNet  MATH  Google Scholar 

  168. S. Kaplan, On the growth of solutions of quasi-linear parabolic equations. Commun. Pure Appl. Math. 16, 305–330 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  169. G. Karch, Nonlinear evolution equations with anomalous diffusion, in Qualitative Properties of Solutions to Partial Differential Equations. Jindrich Nečas Center for Mathematical Modelling Lecture Notes, vol. 5 (Matfyzpress, Prague, 2009), pp. 25–68

    Google Scholar 

  170. M. Kassmann, A priori estimates for integro-differential operators with measurable kernels. Calc. Var. 34, 1–21 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  171. C. Kienzler, Flat fronts and stability for the porous medium equation. Dissertation, 2013. See also arxiv.org 1403.5811 (2014)

    Google Scholar 

  172. C. Kienzler, H. Koch, J.L. Vázquez, Flatness implies smoothness for solutions of the porous medium equation. arXiv:1609.09048.v1

    Google Scholar 

  173. S. Kim, K.-A. Lee, Hölder estimates for singular non-local parabolic equations. J. Funct. Anal. 261(12), 3482–3518 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  174. D. Kinderlehrer, G. Stampacchia, An introduction to Variational Inequalities and Their Applications. Pure and Applied Mathematics, vol. 88 (Academic, New York, 1980)

    Google Scholar 

  175. J.R. King, Extremely high concentration dopant diffusion in silicon. IMA J. Appl. Math. 40(3), 163–181 (1988)

    Article  Google Scholar 

  176. J.R. King, Self-similar behaviour for the equation of fast nonlinear diffusion. Philos. Trans. R. Soc. Lond. A 343, 337–375 (1993)

    Article  MATH  Google Scholar 

  177. J. King, P. McCabe, On the Fisher-KPP equation with fast nonlinear diffusion. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459(2038), 2529–2546 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  178. J. King, A.A. Lacey, J.L. Vázquez, Persistence of corners in free boundaries in Hele-Shaw flow. Complex analysis and free boundary problems (St. Petersburg, 1994). European J. Appl. Math. 6(5), 455–490 (1995)

    Google Scholar 

  179. A. Kiselev, F. Nazarov, A. Volberg. Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Inv. Math. 167, 445–453 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  180. A. Kiselev, F. Nazarov, R. Shterenberg, Blow up and regularity for fractal Burgers equation. Dyn. Partial Differ. Equ. 5, 211–240 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  181. H. Koch, Non-Euclidean singular integrals and the porous medium equation. University of Heidelberg, Habilitation Thesis (1999). http://www.iwr.uniheidelberg.de/groups/amj/koch.html

    Google Scholar 

  182. A.N. Kolmogorov, I.G. Petrovskii, N.S. Piskunov, Etude de l’équation de diffusion avec accroissement de la quantité de matière, et son application à un problème biologique. Bjul. Moskowskogo Gos. Univ. 17, 1–26 (1937)

    Google Scholar 

  183. S.N. Kruzhkov, First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) (Russian) 81(123), 228–255 (1970)

    Google Scholar 

  184. O.A. Ladyzhenskaya, N.N. Ural’tseva, Linear and Quasilinear Elliptic Equations (Academic, New York, 1968) [Translated from the Russian]

    MATH  Google Scholar 

  185. O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs, vol. 23 (American Mathematical Society, Providence, RI, 1968)

    Google Scholar 

  186. G. Lamé, B.P. Clapeyron, Mémoire sur la solidification par refroidissement d’un globe liquid. Ann. Chimie Phys. 47, 250–256 (1831)

    Google Scholar 

  187. N.S. Landkof, Foundations of Modern Potential Theory. Die Grundlehren der mathematischen Wissenschaften, Band 180 (Springer, New York, 1972) [Translated from the Russian by A.P. Doohovskoy]

    Google Scholar 

  188. L.S. Leibenzon, The Motion of a Gas in a Porous Medium, Complete Works, vol. 2 (Acad. Sciences URSS, Moscow, 1953) (Russian). First published in Neftanoe i slantsevoe khozyastvo, 10, 1929, and Neftanoe khozyastvo, 8–9, 1930 (Russian)

    Google Scholar 

  189. H.A. Levine, The role of critical exponents in blowup theorems. SIAM Rev. 32(2), 262–288 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  190. D. Li, J.L. Rodrigo, X. Zhang, Exploding solutions for a nonlocal quadratic evolution problem. Rev. Mat. Iberoam. 26(1), 295–332 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  191. G.M. Lieberman, Second Order Parabolic Differential Equations (World Scientific, River Edge, NJ, 1996)

    Book  MATH  Google Scholar 

  192. F.H. Lin, P. Zhang, On the hydrodynamic limit of Ginzburg-Landau vortices. Discrete Contin. Dyn. Syst. 6, 121–142 (2000)

    MathSciNet  MATH  Google Scholar 

  193. J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications (French). vol. 1. Travaux et Recherches Mathématiques, vol. 17 (Dunod, Paris 1968); vol. 2. Travaux et Recherches Mathématiques, vol. 18 (Dunod, Paris 1968); vol. 3. Travaux et Recherches Mathématiques, vol. 20 (Dunod, Paris, 1970)

    Google Scholar 

  194. S. Lisini, E. Mainini, A. Segatti, A gradient flow approach to the porous medium equation with fractional pressure. arXiv:1606.06787

    Google Scholar 

  195. P. Lu, L. Ni, J.L. Vázquez, C. Villani, Local Aronson-Bénilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds. J. Math. Pures Appl. (9) 91(1), 1–19 (2009)

    Google Scholar 

  196. A. Majda, E. Tabak, A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow, nonlinear phenomena in ocean dynamics (Los Alamos, NM, 1995). Phys. D. 98(2–4), 515–522 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  197. J.M. Mazón, J.D. Rossi, J. Toledo, Fractional p-Laplacian evolution equations. J. Math. Pures Appl. (9) 105(6), 810–844 (2016)

    Google Scholar 

  198. A.M. Meirmanov, The Stefan Problem. de Gruyter Expositions in Mathematics, vol. 3 (Walter de Gruyter & Co., Berlin, 1992) [translated from the Russian]

    Google Scholar 

  199. A. Mellet, S. Mischler, C. Mouhot, Fractional diffusion limit for collisional kinetic equations. Arch. Ration. Mech. Anal. 199, 493–525 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  200. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  201. J.W. Morgan, G. Tian, Ricci Flow and the Poincaré Conjecture. Clay Mathematics Monographs (American Mathematical Society, Providence, RI, 2007)

    Google Scholar 

  202. J. Moser, A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13, 457–468 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  203. J. Moser, A Harnack inequality for parabolic differential equations. Commun. Pure Appl. Math. 17, 101–134 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  204. R. Musina, A.I. Nazarov, On fractional Laplacians. Commun. Partial Differ. Equ. 39(9), 1780–1790 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  205. M. Muskat, The Flow of Homogeneous Fluids Through Porous Media (McGraw-Hill, New York, 1937)

    MATH  Google Scholar 

  206. J. Nash, Parabolic equations. Proc. Natl. Acad. Sci. USA 43, 754–758 (1957)

    Article  MATH  Google Scholar 

  207. J. Nash, Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80, 931–954 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  208. R.H. Nochetto, E. Otarola, A.J. Salgado, A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15(3), 733–791 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  209. R.H. Nochetto, E. Otarola, A.J. Salgado, A PDE approach to space-time fractional parabolic problems. SIAM J. Numer. Anal. 54(2), 848–873 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  210. K. Nyström, O. Sande, Extension properties and boundary estimates for a fractional heat operator. Nonlinear Anal. 140, 29–37 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  211. H. Okuda, J.M. Dawson, Theory and numerical simulation on plasma diffusion across a magnetic field. Phys. Fluids 16, 408–426 (1973)

    Article  Google Scholar 

  212. O.A. Oleinik, A.S. Kalashnikov, Y.-I. Chzou, The Cauchy problem and boundary problems for equations of the type of unsteady filtration. Izv. Akad. Nauk SSR Ser. Math. 22, 667–704 (1958) [in Russian]

    MATH  Google Scholar 

  213. C. Pozrikidis, The Fractional Laplacian (Chapman and Hall/CRC, Boca Raton, 2016)

    Book  MATH  Google Scholar 

  214. D. Puhst, On the evolutionary fractional p-Laplacian. Appl. Math. Res. Express 2015(2), 253–273 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  215. G. Reyes, J.L. Vázquez, Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Commun. Pure Appl. Anal. 8, 493–508 (2009)

    MathSciNet  MATH  Google Scholar 

  216. S. Richardson, Some Hele Shaw flows with time-dependent free boundaries. J. Fluid Mech. 102, 263–278 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  217. A. Rodríguez, J.L. Vázquez, Obstructions to existence in fast-diffusion equations J. Differ. Equ. 184(2), 348–385 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  218. X. Ros-Oton, J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101, 275–302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  219. L.I. Rubinstein, The Stefan Problem. Translations of Mathematical Monographs, vol. 27 (American Mathematical Society, Providence, RI, 1971)

    Google Scholar 

  220. P.G. Saffman, G.I. Taylor. The penetration of fluid into a porous medium Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. Ser. A 245, 312–329 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  221. S. Salsa, Partial Differential Equations in Action. From Modelling to Theory, 3rd edn. Unitext, vol. 99 (Springer, Berlin, 2016)

    Google Scholar 

  222. R.W. Schwab, L. Silvestre, Regularity for parabolic integro-differential equations with very irregular kernels. Anal. Partial Differ. Equ. 9(3), 727–772 (2016)

    MathSciNet  MATH  Google Scholar 

  223. C. Seis, Long-time asymptotics for the porous medium equation: The spectrum of the linearized operator. J. Differ. Equ. 256(3), 1191–1223 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  224. S. Serfaty, J.L. Vazquez, A mean field equation as limit of nonlinear diffusion with fractional Laplacian operators. Calc. Var. Partial Differ. Equ. 49(3–4), 1091–1120 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  225. J. Serrin, Local behavior of solutions of quasi-linear equations. Acta Math. 111, 247–302 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  226. R. Servadei, E. Valdinoci, On the spectrum of two different fractional operators. Proc. R. Soc. Edinb. A 144(4), 831–855 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  227. L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator. Ph. D. thesis, University of Texas at Austin (2005)

    Google Scholar 

  228. L. Silvestre, Hölder estimates for solutions of integro-differential equations like the fractional Laplace Indiana Univ. Math. J. 55(3), 1155–1174 (2006)

    MathSciNet  MATH  Google Scholar 

  229. Y. Sire, J. L.Vázquez, B. Volzone, Symmetrization for fractional elliptic and parabolic equations and an isoperimetric application. Chin. Ann. Math. Ser. B 38(2), 661–686 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  230. J.A. Smoller, Shock Waves and Reaction-Diffusion Equations (Springer, New York, 1982)

    MATH  Google Scholar 

  231. H.M. Soner, Stochastic representations for nonlinear parabolic PDEs, in Handbook of Differential Equations: Evolutionary Equations. Handbook of Differential Equations, vol. III (Elsevier/North-Holland, Amsterdam, 2007), pp. 477–526

    Google Scholar 

  232. D. Stan, J.L. Vázquez, Asymptotic behaviour of the doubly nonlinear diffusion equation \(u_{t} = \Delta _{p}(u^{m})\) on bounded domains. Nonlinear Anal. 77, 1–32 (2013)

    Article  MathSciNet  Google Scholar 

  233. D. Stan, J.L. Vázquez, The Fisher-KPP equation with nonlinear fractional diffusion. SIAM J. Math. Anal. 46(5), 3241–3276 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  234. D. Stan, F. del Teso, J.L. Vázquez, Finite and infinite speed of propagation for porous medium equations with fractional pressure. Comptes Rendus Mathématique (Comptes Rendus Acad. Sci. Paris) 352(2), 123–128 (2014). arXiv:1311.7007

    Google Scholar 

  235. D. Stan, F. del Teso, J.L. Vázquez, Transformations of Self-Similar Solutions for porous medium equations of fractional type. Nonlinear Anal. 119, 62–73 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  236. D. Stan, F. del Teso, J.L. Vázquez, Finite and infinite speed of propagation for porous medium equations with fractional pressure. J. Differ. Equ. 260(2), 1154–1199 (2016)

    Article  MATH  Google Scholar 

  237. D. Stan, F. del Teso, J.L. Vázquez, Existence of weak solutions for porous medium equations with nonlocal pressure. arXiv:1609.05139

    Google Scholar 

  238. J. Stefan, Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere. Ann. Phys. Chemie 42, 269–286 (1891)

    Article  MATH  Google Scholar 

  239. E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30 (Princeton University Press, Princeton, NJ, 1970)

    Google Scholar 

  240. P.R. Stinga, J.L. Torrea, Extension problem and Harnack’s inequality for some fractional operators. Comm. Partial Differ. Equ. 35, 2092–2122 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  241. P.R. Stinga, J.L. Torrea, Regularity theory and extension problem for fractional nonlocal parabolic equations and the master equation. arXiv:1511.01945

    Google Scholar 

  242. A.M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. B 237(641), 37–72 (1952)

    Article  MathSciNet  Google Scholar 

  243. E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. 49, 33–44 (2009)

    MathSciNet  MATH  Google Scholar 

  244. S.R.S. Varadhan, Lectures on Diffusion Problems and Partial Differential Equations. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 64 (Tata Institute of Fundamental Research, Bombay, 1980)

    Google Scholar 

  245. N.T. Varopoulos, Random walks and Brownian motion on manifolds. Symposia Mathematica, vol. XXIX (Cortona, 1984), 97–109, Sympos. Math., vol. XXIX (Academic, New York, 1987)

    Google Scholar 

  246. J.L. Vázquez, Nonexistence of solutions for nonlinear heat equations of fast-diffusion type. J. Math. Pures Appl. (9) 71(6), 503–526 (1992)

    Google Scholar 

  247. J.L. Vázquez, Asymptotic behaviour for the Porous Medium Equation posed in the whole space. J. Evol. Equ. 3, 67–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  248. J.L. Vázquez, Asymptotic behaviour for the PME in a bounded domain. The Dirichlet problem. Monatshefte für Math. 142(1–2), 81–111 (2004)

    Article  Google Scholar 

  249. J.L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type. Oxford Lecture Series in Mathematics and Its Applications, vol. 33 (Oxford University Press, Oxford, 2006)

    Google Scholar 

  250. J.L. Vázquez, Perspectives in Nonlinear Diffusion: Between Analysis, Physics and Geometry. Proceedings of International Congress of Mathematicians. vol. I (European Mathematical Society, Zürich, 2007), pp. 609–634

    Google Scholar 

  251. J.L. Vázquez, The Porous Medium Equation. Mathematical Theory. Oxford Mathematical Monographs (The Clarendon Press/Oxford University Press, Oxford, 2007)

    Google Scholar 

  252. J.L. Vázquez, Nonlinear diffusion with fractional Laplacian operators, in Nonlinear Partial Differential Equations: the Abel Symposium 2010, ed. by H. Holden, K.H. Karlsen (Springer, Berlin, 2012), pp. 271–298

    Chapter  Google Scholar 

  253. J.L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Nonlinear Elliptic and Parabolic Differential Equations. Discrete Contin. Dyn. Syst. S 7(4), 857–885 (2014)

    Google Scholar 

  254. J.L. Vázquez, Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type. J. Eur. Math. Soc. 16(4), 769–803 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  255. J.L. Vázquez, The mesa problem for the fractional porous medium equation. Interfaces Free Bound. 17(2), 261–286 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  256. J.L. Vázquez, Fundamental solution and long time behaviour of the Porous Medium Equation in hyperbolic space. J. Math. Pures Appl. (9) 104(3), 454–484 (2015)

    Google Scholar 

  257. J.L. Vázquez, The Dirichlet Problem for the fractional p-Laplacian evolution equation. J. Differ. Equ. 260(7), 6038–6056 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  258. J.L. Vázquez, Existence of maximal solutions for some very singular nonlinear fractional diffusion equations in 1D. J. Evol. Equ. 16, 723–758 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  259. J.L. Vázquez, B. Volzone, Symmetrization for linear and nonlinear fractional parabolic equations of porous medium type. J. Math. Pures Appl. (9) 101(5), 553–582 (2014)

    Google Scholar 

  260. J.L. Vázquez, B. Volzone, Optimal estimates for fractional fast diffusion equations. J. Math. Pures Appl. (9) 103(2), 535–556 (2015)

    Google Scholar 

  261. J.L. Vázquez, A. de Pablo, F. Quirós, A. Rodríguez, Classical solutions and higher regularity for nonlinear fractional diffusion equations. J. Eur. Math. Soc. 19(7), 1949–1975 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  262. L. Vlahos, H. Isliker, Y. Kominis, K. Hizonidis, Normal and anomalous diffusion: a tutorial, in Order and Chaos, ed. by T. Bountis, vol. 10 (Patras University Press, Patras, 2008)

    Google Scholar 

  263. E. Weinan, Dynamics of vortex-liquids in Ginzburg-Landau theories with applications to superconductivity. Phys. Rev. B 50(3), 1126–1135 (1994)

    Google Scholar 

  264. D.V. Widder, The Heat Equation (Academic, New York, 1975)

    MATH  Google Scholar 

  265. Wikipedia, article Diffusion, February (2017)

    Google Scholar 

  266. P. Wilmott, S. Howison, J. Dewynne, The Mathematics of Financial Derivatives. A Student Introduction (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  267. W.A. Woyczyński, Lévy processes in the physical sciences, in Lévy Processes – Theory and Applications, ed. by T. Mikosch, O. Barndorff-Nielsen, S. Resnick (Birkhäuser, Boston, 2001), pp. 241–266

    Chapter  Google Scholar 

  268. S.T. Yau, On the heat kernel of a complete Riemannian manifold. J. Math. Pures Appl. (9) 57(2), 191–201 (1978)

    Google Scholar 

  269. Ya.B. Zel’dovich, Yu.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena II (Academic, New York, 1966)

    Google Scholar 

  270. X.H. Zhou, W.L. Xiao, J.C. Chen, Fractional porous medium and mean field equations in Besov spaces. Electron. J. Differ. Equ. 2014(199), 1–14 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Spanish Project MTM2014-52240-P. The text is based on series of lectures given at the CIME Summer School held in Cetraro, Italy, in July 2016. The author is grateful to the CIME foundation for the excellent organization. The author is also very grateful to his collaborators mentioned in the text for an effort of many years. Special thanks are due to F. del Teso, N. Simonov and D. Stan for a careful reading and comments on the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Luis Vázquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Vázquez, J.L. (2017). The Mathematical Theories of Diffusion: Nonlinear and Fractional Diffusion. In: Bonforte, M., Grillo, G. (eds) Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions. Lecture Notes in Mathematics(), vol 2186. Springer, Cham. https://doi.org/10.1007/978-3-319-61494-6_5

Download citation

Publish with us

Policies and ethics