Skip to main content

Characterisation of Functionalised Microbubbles for Ultrasound Imaging and Therapy

  • Chapter
  • First Online:
  • 1708 Accesses

Abstract

Functionalised microbubbles have shown considerable potential both as contrast agents for ultrasound imaging and as a means of enhancing ultrasound mediated therapy. With the development of advanced techniques such as quantitative ultrasound imaging and targeted drug delivery, the accurate prediction of their response to ultrasound excitation is becoming increasingly important. Characterising microbubble behavior represents a considerable technical challenge on account of their small size (<10 µm diameter) and the ultrasound frequencies used to drive them in clinical applications (typically between 0.5 and 20 MHz). This chapter examines the three main techniques used for the characterization of microbubble dynamics: ultra-high speed video microscopy, laser scattering and acoustic attenuation and back scattering measurements. The principles of the techniques are introduced with examples of their applications and their relative advantages and disadvantages are then discussed. In the second half of the chapter magnetically functionalized microbubbles are used as a case study and results obtained using each of the three techniques are presented and compared. The chapter concludes with recommendations for combining different methods for microbubble characterization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Single element transducers may be used as shown in Fig. 4 or alternatively the transmitting transducer may be a clinical ultrasound probe and the receiving transducer a hydrophone.

References

  1. D. Cosgrove, Ultrasound contrast agents: an overview. Eur. J. Radiol. 60, 324–330 (2006). doi:10.1016/j.ejrad.2006.06.022

    Article  Google Scholar 

  2. W. Luo, X.D. Zhou, X.L. Ren, M.J. Zheng, J. Zhang, G.B. He, Enhancing effects of SonoVue, a microbubble sonographic contrast agent, on high-intensity focused ultrasound ablation in rabbit livers in vivo. J. Ultras. Med. 26, 469–476 (2007)

    Article  Google Scholar 

  3. S. Meairs, A. Alonso, Ultrasound, microbubbles and the blood-brain barrier. Prog. Biophys. Mol. Bio. 93, 354–362 (2007). doi:10.1016/J.Pbiomolbio.2006.07.019

  4. J.L. Bull, The application of microbubbles for targeted drug delivery. Expert Opin. Drug Del. 4, 475–493 (2007). doi:10.1517/17425247.4.5.475

    Article  Google Scholar 

  5. M. Bazan-Peregrino, C.D. Arvanitis, B. Rifai, L.W. Seymour, C.C. Coussios, Ultrasound-induced cavitation enhances the delivery and therapeutic efficacy of an oncolytic virus in an in vitro model. J. Control. Release 157, 235–242 (2012). doi:10.1016/j.jconrel.2011.09.086

    Article  Google Scholar 

  6. I. Lentacker, I. De Cock, R. Deckers, S.C. De Smedt, C.T. Moonen, Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv. Drug Deliv. Rev. 72, 49–64 (2013). doi:10.1016/j.addr.2013.11.008

    Article  Google Scholar 

  7. H. Leong-Poi, J. Christiansen, A.L. Klibanov, S. Kaul, J.R. Lindner, Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to alpha(v)-integrins. Circulation 107, 455–460 (2003). doi:10.1161/01.CIR.0000044916.05919.8B

    Article  Google Scholar 

  8. P.A. Dayton, D. Pearson, J. Clark, S. Simon, P.A. Schumann, R. Zutshi et al., Ultrasonic analysis of peptide-and antibody-targeted microbubble contrast agents for molecular imaging of alpha(V)beta(3)-expressing cells. Mol. Imaging 3, 125–134 (2004). doi:10.1162/1535350041464883

    Article  Google Scholar 

  9. M.J. Shortencarier, P.A. Dayton, S.H. Bloch, P.A. Schumann, T.O. Matsunaga, K.W. Ferrara, A method for radiation-force localized drug delivery using gas-filled lipospheres. IEEE T. Ultrason. Ferr. 51, 822–831 (2004). doi:10.1109/TUFFC.2004.1320741

    Article  Google Scholar 

  10. J. Tu, J. Guan, Y. Qiu, T.J. Matula, Estimating the shell parameters of SonoVue microbubbles using light scattering. J. Acoust. Soc. Am. 126, 2954–2962 (2009). doi:10.1121/1.3242346

    Article  Google Scholar 

  11. B. Geers, I. Lentacker, S. Cool, J. Demeester, S.C. De Smedt, N.N. Sanders, Ultrasound responsive doxorubicin-loaded microbubbles; towards an easy applicable drug delivery platform. J. Control. Release 148, e59–e60 (2010). doi:10.1016/j.jconrel.2010.07.023

    Google Scholar 

  12. E. Stride, The influence of surface adsorption on microbubble dynamics. Philos. T. Roy. Soc. A 366, 2103–2115 (2008). doi:10.1098/rsta.2008.0001

    Article  Google Scholar 

  13. C.T. Chin, C. Lancee, J. Borsboom, F. Mastik, M.E. Frijlink, N. de Jong et al., Brandaris 128: a digital 25 million frames per second camera with 128 highly sensitive frames. Rev. Sci. Instrum. 74, 5026–5034 (2003). doi:10.1063/1.1626013

    Article  Google Scholar 

  14. E.C. Gelderblom, H.J. Vos, F. Mastik, T. Faez, Y. Luan, T.J.A. Kokhuis et al., Brandaris 128 ultra-high-speed imaging facility: 10 years of operation, updates, and enhanced features. Rev. Sci. Instrum. 83, 103706 (2012). doi:10.1063/1.4758783

    Article  Google Scholar 

  15. V. Garbin, D. Cojoc, E. Ferrari, E. Di Fabrizio, M.L.J. Overvelde, S.M. van der Meer et al., Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and high-speed imaging. Appl. Phys. Lett. 90, 114103 (2007). doi:10.1063/1.2713164

    Article  Google Scholar 

  16. B. Dollet, S.M. van der Meer, V. Garbin, N. de Jong, D. Lohse, M. Versluis, Nonspherical oscillations of ultrasound contrast agent microbubbles. Ultrasound Med. Biol. 34, 1465–1473 (2008). doi:10.1016/j.ultrasmedbio.2008.01.020

    Article  Google Scholar 

  17. M.A. Borden, D.E. Kruse, C.F. Caskey, S. Zhao, P.A. Dayton, K.W. Ferrara, Influence of lipid shell physicochemical properties on ultrasound-induced microbubble destruction. IEEE T. Ultrason. Ferr. 52, 1992–2002 (2005). doi:10.1109/TUFFC.2005.1561668

    Article  Google Scholar 

  18. J. Viti, R. Mori, F. Guidi, M. Versluis, N. de Jong, P. Tortoli, Nonlinear oscillations of deflating bubbles. IEEE T. Ultrason. Ferr. 59, 2818–2824 (2012). doi:10.1109/Tuffc.2012.2524

    Article  Google Scholar 

  19. M. Overvelde, V. Garbin, B. Dollet, N. de Jong, D. Lohse, M. Versluis, Dynamics of coated microbubbles adherent to a wall. Ultrasound Med. Biol. 37, 1500–1508 (2011). doi:10.1016/j.ultrasmedbio.2011.05.025

    Article  Google Scholar 

  20. J. Guan, T.J. Matula, Using light scattering to measure the response of individual ultrasound contrast microbubbles subjected to pulsed ultrasound in vitro. J. Acoust. Soc. Am. 116, 2832–2842 (2004). doi:10.1121/1.1795334

    Article  Google Scholar 

  21. P. Rademeyer, D. Carugo, J.Y. Lee, E. Stride, Microfluidic system for high throughput characterisation of echogenic particles. Lab Chip 15, 417–428 (2015). doi:10.1039/c4lc01206b

    Article  Google Scholar 

  22. A. Bouakaz, N. De Jong, C. Cachard, Standard properties of ultrasound contrast agents. Ultrasound Med. Biol. 24, 469–472 (1998). doi:10.1016/S0301-5629(97)00290-1

    Article  Google Scholar 

  23. E. Stride, C. Porter, A.G. Prieto, Q. Pankhurst, Enhancement of microbubble mediated gene delivery by simultaneous exposure to ultrasonic and magnetic fields. Ultrasound Med. Biol. 35, 861–868 (2009). doi:10.1016/j.ultrasmedbio.2008.11.010

    Article  Google Scholar 

  24. D. Vlaskou, O. Mykhaylyk, P. Pradhan, C. Bergemann, A.L. Klibanov, K. Hensel et al., Magnetic microbubbles as mediators of gene delivery. Human Gene Ther. 21, 1429–1430 (2010). doi:10.1063/1.3530059

    Google Scholar 

  25. H. Mulvana, R.J. Eckersley, M.-X. Tang, Q. Pankhurst, E. Stride, Theoretical and experimental characterisation of magnetic microbubbles. Ultrasound Med. Biol. 38, 864–875 (2012). doi:10.1016/j.ultrasmedbio.2012.01.027

    Article  Google Scholar 

  26. K. Chetty, E. Stride, C.A. Sennoga, J.V. Hajnal, R.J. Eckersley, High-speed optical observations and simulation results of SonoVue microbubbles at low-pressure insonation. IEEE T. Ultrason. Ferr. 55, 1333–1342 (2008). doi:10.1109/tuffc.2008.796

    Article  Google Scholar 

  27. H.J. Vos, M. Versluis, N. de Jong, Orthogonal observations of vibrating microbubbles. Ultrasonics 1–6, 765–768 (2007). doi:10.1109/Ultsym.2007.196

    Google Scholar 

  28. J. Sijl, H.J. Vos, T. Rozendal, N. de Jong, D. Lohse, M. Versluis, Combined optical and acoustical detection of single microbubble dynamics. J. Acoust. Soc. Am. 130, 3271–3281 (2011). doi:10.1121/1.3626155

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleanor Stride .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Stride, E. et al. (2018). Characterisation of Functionalised Microbubbles for Ultrasound Imaging and Therapy. In: Tsuji, K. (eds) The Micro-World Observed by Ultra High-Speed Cameras. Springer, Cham. https://doi.org/10.1007/978-3-319-61491-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61491-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61490-8

  • Online ISBN: 978-3-319-61491-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics