Skip to main content

Real-Time Hard X-ray Imaging

  • Chapter
  • First Online:
The Micro-World Observed by Ultra High-Speed Cameras

Abstract

Using hard X-rays for high-speed and ultra high-speed imaging has enormous potential to visualize the interior of opaque systems as they change with time. Exposure times below one nanosecond for ultra high-speed imaging are accessible when synchrotron light sources are employed and this provides a non-destructive method of in-motion radiography. The polychromatic radiation of insertion devices in combination with X-ray phase contrast has proven to be suited for acquisition rates up to the MHz range. This chapter outlines the basic principles of indirect hard X-ray imaging detectors for real-time imaging, and other detection schemes and sources of radiation are briefly discussed. The potential of using hard X-rays for high-speed imaging is demonstrated with application examples from soft matter physics and materials processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.E. Johns, J.R. Cunningham, The Physics of Radiology, 4th edn. (Charles C Thomas, Springfield, 1983)

    Google Scholar 

  2. A.C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988)

    MATH  Google Scholar 

  3. A. Koch, C. Raven, P. Spanne, A. Snigirev, X-ray imaging with submicrometer resolution employing transparent luminescent screens. J. Opt. Soc. Am. 15, 1940–1951 (1998)

    Article  Google Scholar 

  4. A. Rack, F. Garcia-Moreno, C. Schmitt, O. Betz, A. Cecilia, A. Ershov, T. Rack, J. Banhart, S. Zabler, On the possibilities of hard X-ray imaging with high spatio-temporal resolution using polychromatic synchrotron radiation. J. X-ray Sci. Tech. 18, 429–441 (2010)

    Google Scholar 

  5. M.P. Olbinado, X. Just, J.-L. Gelet, P. Lhuissier, M. Scheel, P. Vagovic, T. Sato, R. Graceffa, J. Morse, A. Rack, MHz frame rate hard X-ray phase-contrast imaging using synchrotron radiation. Opt. Expr. 25, 13857–13871 (2017)

    Google Scholar 

  6. A. Rack, M. Scheel, A.N. Danilewsky, Real-time direct and diffraction X-ray imaging of irregular silicon wafer breakage. IUCrJ 3, 108–114 (2016)

    Article  Google Scholar 

  7. M. Hudspeth, B. Claus, S. Dubelman, J. Black, A. Mondal, N. Parab, C. Funnell, F. Hai, M.L. Qi, K. Fezzaa, S.N. Luo, W. Chen, High speed synchrotron X-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading. Rev. Sci. Instrum. 84, 025102 (2013)

    Article  Google Scholar 

  8. W. Hartmann, G. Markewitz, U. Rettenmaier, H.J. Queisser, High resolution direct-display X-ray topography. Appl. Phys. Lett. 27, 308–309 (1975)

    Article  Google Scholar 

  9. A. Koch, Lens coupled scintillating screen-CCD X-ray area detector with a high quantum efficiency, Nucl. Instrum. Meth. Phys. Res. A 348, 654–658 (1994)

    Google Scholar 

  10. S.N. Luo, B.J. Jensen, D.E. Hooks, K. Fezzaa, K.J. Ramos, J.D. Yeager, K. Kwiatkowski, T. Shimada, Gas gun shock experiments with single-pulse X-ray phase contrast imaging and diffraction at the Advanced Photon Source. Rev. Sci. Instrum. 83, 073903 (2012)

    Article  Google Scholar 

  11. H.T. Philipp, M.W. Tate, P. Purohit, K.S. Shanks, J.T. Weiss, S.M. Gruner, High-speed X-ray imaging pixel array detector for synchrotron bunch isolation. J. Synchrotron Rad. 23, 395–403 (2016)

    Article  Google Scholar 

  12. J. Schwandt, E. Fretwurst, R. Klanner, J. Zhang, Design of the AGIPD sensor for the European XFEL. J. Instrum. 8, C01015 (2013)

    Article  Google Scholar 

  13. P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, M. Schlenker, Phase objects in synchrotron radiation hard X-ray imaging. J. phys. D Appl. Phys. 29, 133–146 (1996)

    Article  Google Scholar 

  14. H. Wiedemann, Synchrotron Radiation (Springer, Berlin, 2002)

    Google Scholar 

  15. A. Rack, M. Scheel, L. Hardy, C. Curfs, A. Bonnin, H. Reichert, Exploiting coherence for real-time studies by single-bunch imaging. J. Synchrotron Rad. 21, 815–818 (2014)

    Article  Google Scholar 

  16. S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, M. Schlenker, Optimization of phase contrast imaging using hard x rays. Rev. Sci. Instrum. 76, 073705 (2005)

    Article  Google Scholar 

  17. E. Maire, P.J. Withers, Quantitative X-ray tomography. Internat, Mater. Rev. 59, 1–43 (2014)

    Google Scholar 

  18. E. Maire, C. Le Bourlot, J. Adrien, A. Mortensen, R. Mokso, 20 Hz X-ray tomography during an in situ tensile test. Int. J. Fracture 200, 3–12 (2016)

    Article  Google Scholar 

  19. J. Dittmann, A. Eggert, M. Lambertus, J. Dombrowski, A. Rack, S. Zabler, Finding robust descriptive features for the characterization of the coarsening dynamics of three dimensional whey protein foams. J. Coll. Interface Sci. 467, 148–157 (2016)

    Article  Google Scholar 

  20. A. Meagher, F. García-Moreno, J. Banhart, A. Mughal, S. Hutzler, An experimental study of columnar crystals using monodisperse microbubbles. Coll. Surfaces A 473, 55–59 (2015)

    Article  Google Scholar 

  21. R. Acharya, J.A. Sharon, A. Staroselsky, Prediction of microstructure in laser powder bed fusion process. Acta Mater. 124, 360–371 (2017)

    Article  Google Scholar 

  22. S. Besner, M. Meunier, Chapter 7: Laser precision microfabrication, in Springer Series in Materials Science, vol. 135 (Springer, Heidelberg, 2010), pp. 163–187

    Book  Google Scholar 

  23. Z. Wang, C.L. Morris, J.S. Kapustinsky, K. Kwiatkowski, S.-N. Luo, Towards hard X-ray imaging at GHz frame rate. Rev. Sci. Instrum. 83, 10E510 (2012)

    Article  Google Scholar 

  24. T.G. Etoh, A.Q. Nguyen, Y. Kamakura, K. Shimonomura, T.Y. Le, N. Mori, The theoretical highest frame rate of silicon image sensors. Sensors 17, 483 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Rack .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

421713_1_En_10_MOESM1_ESM.avi

Dynamics in an aqueous foam obtained by means of high-speed phase contrast radioscopy. The collapse of two cell walls can be followed as well as the rearrangement of the pores in the immediate neighborhood (AVI 23926 kb)

421713_1_En_10_MOESM2_ESM.avi

Laser processing of a polystyrene foam: Interaction of an isolated laser irradiation (800 mJ, 20 ns pulse) with the aluminium-coated surface of a polystyrene foam is seen. The frame acquisition rate: 1.4 MHz, the integration time of the camera: 200 ns. (Contrast in the movie is dominated by X-ray phase contrast.) (AVI 37507 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Rack, A., Olbinado, M., Scheel, M., Jodar, B., Morse, J. (2018). Real-Time Hard X-ray Imaging. In: Tsuji, K. (eds) The Micro-World Observed by Ultra High-Speed Cameras. Springer, Cham. https://doi.org/10.1007/978-3-319-61491-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61491-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61490-8

  • Online ISBN: 978-3-319-61491-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics