Skip to main content

Using Digital Environments to Address Students’ Mathematical Learning Difficulties

  • Chapter
  • First Online:

Part of the book series: Mathematics Education in the Digital Era ((MEDE,volume 9))

Abstract

The need to deal with different cognitive necessities of students in the mathematical classroom, and in particular of students who persistently fail in mathematics, frequently referred to as “having mathematical learning difficulties or disabilities” (MLD), has become an important topic of research in mathematics education and in cognitive psychology. Though frameworks for analyzing students’ difficulties and/or for designing inclusive activities are still quite fragmentary, the literature rather consistently suggests that technology can support the learning of students with different learning characteristics. The focus of this chapter is on providing insight into this issue by proposing analyses of specific software with a double perspective. We will analyze design features of the selected software, based on the potential support these can provide to students’ learning processes, in particular those of students classified as having MLD. We will also analyze some interactions that actually occurred between students and the software, highlighting important qualitative results from recent studies in which we have been involved.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    There are four types of learning disabilities recognized at the moment in Italy: dyslexia, dyscalculia, dysgraphia, dysorthographia (LEGGE 8 ottobre 2010, n. 170, Nuove norme in materia di disturbi specifici di apprendimento in ambito scolastico).

  2. 2.

    In some “extreme” cases Italy grants a special education teacher to the student in need, who will sit next to the student during given hours of the student’s regular school schedule.

  3. 3.

    For a complete list of the principles, guidelines and checkpoints and a more extensive description of CAST’s activities, visit http://www.udlcenter.org.

  4. 4.

    See http://www.udlcenter.org/aboutudl/udlevidence.

  5. 5.

    See http://www.udlcenter.org/aboutudl/whatisudl.

  6. 6.

    For further details see: http://www.udlcenter.org/aboutudl/whatisudl/3principles.

  7. 7.

    The items are taken from the interactive list at http://www.udlcenter.org/research/researchevidence.

  8. 8.

    For a more complete discussion see volume 42(4) of the Journal of Cross-Cultural Psychology.

  9. 9.

    Sometimes fingers are used also to represent numbers larger than 10, but in this case the meanings referred to by different fingers must be different (for example 4 and 13 might be represented raising the same fingers: 1 on one hand and 3 on the other) which can be confusing for children.

  10. 10.

    See https://itunes.apple.com/us/app/touchcounts/id897302197?mt=8.

  11. 11.

    See the app Motion Math: Fractions at http://motionmathgames.com/motion-math-game/.

  12. 12.

    For a more detailed description of these environments see www.alnuset.com.

  13. 13.

    Of course the representations of the numerical sets are accomplished on a computer, so the sets are actually finite and discrete, but they simulate—with some limitations—the properties of the number sets they represent.

References

  • Andersson, U., & Östergren, R. (2012). Number magnitude processing and basic cognitive functions in children with mathematical learning disabilities. Learning and Individual Differences, 22, 701–714.

    Article  Google Scholar 

  • Arzarello, F. (2006). Semiosis as a multimodal process (pp. 267–299). Numero Especial: Relime.

    Google Scholar 

  • Arzarello, F., Bazzini, L., & Chiappini, G. P. (1994). Intensional semantics as a tool to analyse algebraic thinking. Rendiconti del Seminario Matematico dell’Università di Torino, 52(1), 105–125.

    Google Scholar 

  • Atkinson, B. (1984). Learning disabled students and Logo. Journal of Learning Disabilities, 17(8), 500–501.

    Article  Google Scholar 

  • Baccaglini-Frank, A. (2015). Preventing low achievement in arithmetic through the didactical materials of the PerContare project. In X. Sun, B. Kaur, & J. Novotná (Eds.), ICMI Study 23 Conference Proceedings (pp. 169–176). Macau—China: University of Macau.

    Google Scholar 

  • Baccaglini-Frank, A., & Bartolini Bussi, M. G. (2016). Buone pratiche didattiche per prevenire falsi positivi nelle diagnosi di discalculia: Il progetto PerContare. Form@re, 15(3), 170–184. doi:http://dx.doi.org/10.13128/formare-17182

  • Baccaglini-Frank, A., & Poli, F. (2015a). Migliorare lApprendimento. Percorso per linsegnamento in presenza di BES al primo biennio della scuola secondaria di secondo grado. Novara: DeAgostini Scuola.

    Google Scholar 

  • Baccaglini-Frank, A., & Poli, F. (2015b). Migliorare lApprendimento. Percorso per linsegnamento in presenza di BES al secondo triennio della scuola secondaria di secondo grado. Novara: DeAgostini Scuola.

    Google Scholar 

  • Baccaglini-Frank, A., & Robotti, E. (2013). Gestire gli Studenti con DSA in Classe Alcuni Elementi di un Quadro Comune. In C. Cateni, C. Fattori, R. Imperiale, B. Piochi, & P. Vighi (Eds.), Quaderni GRIMeD n. 1 (75–86).

    Google Scholar 

  • Baccaglini-Frank, A., & Scorza, M. (2013). Preventing learning difficulties in early arithmetic: The PerContare project. In T. Ramiro-Sànchez & M. P. Bermùdez (Eds.), Libro de Actas I Congreso Internacional de Ciencias de la Educatiòn y des Desarrollo (p. 341). Granada: Universidad de Granada.

    Google Scholar 

  • Baccaglini-Frank, A., Antonini, S., Robotti, E., & Santi, G. (2014). Juggling reference frames in the microworld Mak-Trace: The case of a student with MLD. Research Report in C. Nicol, P. Liljedahl, S. Oesterle, & D. Allan (Eds.), Proceedings of the Joint Meeting of PME 38 and PME-NA 36, 2 (81–88). Vancouver, Canada: PME.

    Google Scholar 

  • Ball, D. L., Lubienski, S., & Mewborn, D. (2001). Research on teaching mathematics: The unsolved problem of teachers’ mathe-matics knowledge. In V. Richardson (Ed.), Handbook of research on teaching (4th ed., pp. 433–456). New York: Macmillan.

    Google Scholar 

  • Bartelet, D., Ansari, D., Vaessen, A., & Blomert, L. (2014). Research in developmental disabilities cognitive subtypes of mathematics learning difficulties in primary education. Research in Developmental Disabilities, 35(3), 657–670.

    Article  Google Scholar 

  • Bartolini, M. G., Baccaglini-Frank, A., & Ramploud, A. (2014). Intercultural dialogue and the geography and history of thought. For the Learning of Mathematics, 34(1), 31–33.

    Google Scholar 

  • Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: Artifacts and signs after a Vygotskian perspective. In L. English et al. (Eds.), Handbook of international research in mathematics education (2nd ed., pp. 746–783). New York and London: Routledge.

    Google Scholar 

  • Berch, D. B. (2005). Making sense of number sense: Implications for children with mathematical disabilities. Journal of Learning Disabilities, 38(4), 333–339.

    Article  Google Scholar 

  • Brissiaud, R. (1992). A toll for number construction: Finger symbol sets. In J. Bidaud, C. Meljac, & J.-P. Fischer (Eds.), Pathways to number: Children’s developing numerical abilities. New Jersey: Lawrence Erlbaum Associates.

    Google Scholar 

  • Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46, 3–18.

    Article  Google Scholar 

  • Butterworth, B., & Laurillard, D. (2010). Low Numeracy and Dyscalculia: Identification and intervention. ZDM Mathematics Education, 42, 527–539.

    Article  Google Scholar 

  • Chiappini, G., Robotti, E., & Trgalova, J. (2009). Role of an artifact of dynamic algebra in the conceptualization of the algebraic equality. Proceeding of CERME 6, Lyon (Francia), www.inrp.fr/editions/cerme6

  • Chaachoua, H., Chiappini, G., Croset, M. C., Pedemonte, B., & Robotti, E. (2012). Introduction de nouvelles rerpésentations dans deux environnements pour l’apprentissage de l’algèbre. Recherche en Didactique des mathématiques, pp. 253–281.

    Google Scholar 

  • Clements, D. H. (1999). Geometric and spatial thinking in young children. In J. V. Copley (Ed.), Mathematics in the early years (pp. 66–79). Reston, VA: NCTM.

    Google Scholar 

  • DeThorne, L. S., & Schaefer, B. A. (2004). A guide to child nonverbal IQ measures. American Journal of Speech-Language Pathology, 13, 275–290.

    Article  Google Scholar 

  • Dehaene, S. (1997). The number sense: How the mind creates mathematics. New York: Oxford University Press.

    Google Scholar 

  • Edyburn, D. (2005). Universal design for learning. Special Education Technology Practice, 7(5), 16–22.

    Google Scholar 

  • Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22(3–4), 455–479.

    Article  Google Scholar 

  • Geary, D. C. (1994). Children’s mathematical development. Washington DC: American Psychological Association.

    Google Scholar 

  • Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37, 4–15.

    Article  Google Scholar 

  • Goldenberg, P., Cuoco A., & Mark, J. (1998). A role for geometry in general education, designing learning environments for developing understanding of geometry and space, pp. 3–44.

    Google Scholar 

  • González, J. E. J., & Espínel, G. A. I. (1999). Is IQ-achievement discrepancy relevant in the definition of arithmetic learning disabilities? Learning Disability Quarterly, 22(4), 291–301.

    Article  Google Scholar 

  • Gracia-Bafalluy, M. G., & Noël, M. P. (2008). Does finger training increase young children’s numerical performance? Cortex, 44, 368–375.

    Article  Google Scholar 

  • Griffin, S. A., Case, R., & Siegler, R. S. (1994). Rightstart: Providing the central conceptual prerequisites for first formal learning of arithmetic to students at risk for school failure. In K. McGilly (Ed.), Classroom lessons: Integrating cognitive theory and classroom practice (pp. 24–49). Cambridge, MA: MIT Press.

    Google Scholar 

  • Heyd-Metzuyanim, E. (2013). The co-construction of learning difficulties in mathematics—teacher–student interactions and their role in the development of a disabled mathematical identity. Educational Studies in Mathematics, 83(3), 341–368.

    Article  Google Scholar 

  • Hittmair-Delazer, M., Sailer, U., & Benke, T. (1995). Impaired arithmetic facts but intact conceptual knowledge—Asingle case study of dyscalculia. Cortex, 31, 139–147.

    Article  Google Scholar 

  • Ianes, D. (2006). La speciale normalità. Erickson: Trento.

    Google Scholar 

  • Ianes, D., & Demo, H. (2013). What can be learned from the Italian experience? (p. 61). La Nouvelle Revue de l’Adaptatione de la Scolarisation: Methods for improving inclusion.

    Google Scholar 

  • Karagiannakis, G., Baccaglini-Frank, A., & Papadatos, Y. (2014). Mathematical learning difficulties subtypes classification. Frontiers in Human Neuroscience, 8, 57. doi:10.3389/fnhum.2014.00057

    Article  Google Scholar 

  • Karagiannakis, G., & Baccaglini-Frank, A. (2014). The DeDiMa battery: A tool for identifying students’ mathematical learning profiles. Health Psychology Review, 2(4). doi:10.5114/hpr.2014.46329

  • Karagiannakis, G., Baccaglini-Frank, A., & Roussos, P. (2017). Detecting strengths and weaknesses in learning mathematics through a model classifying mathematical skills. Australian Journal of Learning Difficulties. doi:10.1080/19404158.2017.1289963

  • Kaufmann, L., Mazzocco, M. M., Dowker, A., von Aster, M., Gobel, S. M., Grabner, et al. (2013). Dyscalculia from a developmental and differential perspective. Frontiers in Psychology, 4, 516.

    Google Scholar 

  • Kieran, C. (2006). Research on the learning and teaching of algebra. In G. Gutierrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education. Past, Present and Future. Rotterdam/Taipei: Sense Publishers.

    Google Scholar 

  • Landy, D., & Goldstone, R. L. (2010). Proximity and precedence in arthmetic. Quarterly Journal of Experimental Psychology (Colchester), 63, 1953–1968.

    Article  Google Scholar 

  • Lagrange, J. B., Artigue, M., Laborde, C., & Trouche, T. (2003). Technology and mathematics education: A multidimensional study of the evolution of research and innovation. In A. J. Bishop & al. (Eds.), Second International Handbook of Mathematics Education (pp. 239–271). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Maddux, C. (1984). Using microcomputers with the learning disabled: Will the potential be realized? Educational Computer, 4(1), 31–32.

    Google Scholar 

  • Mammarella, I. C., Giofrè, D., Ferrara, R., & Cornoldi, C. (2013). Intuitive geometry and visuospatial working memory in children showinsymptoms of non verbal learning disabilities. Child Neuropsychology, 19, 235–249. doi:10.1080/09297049.2011.640931

    Article  Google Scholar 

  • Mammarella, I. C., Lucangeli, D., & Cornoldi, C. (2010). Spatial working memory and arithmetic deficits in children with non verbal learning difficulties. Journal of Learning Disabilities, 43, 455–468. doi:10.1177/0022219409355482

    Article  Google Scholar 

  • Mariani, L. (1996). Investigating Learning Styles. Perspectives, Journal of TESOL-Italy, XXI, 2/XXII, 1, Spring.

    Google Scholar 

  • Mazzocco, M. M. (2008). Defining and differentiating mathematical learning disabilities and difficulties. In D. B. Berch & M. M. Mazzocco (Eds.), Why is math so hard for some children? The nature and origins of mathematical learning difficulties and disabilities (pp. 29–47). Baltimore, MD: Brookes Publishing Company.

    Google Scholar 

  • Mazzocco, M. M., & Myers, G. F. (2003). Complexities in identifying and defining mathematics learning disability in the primary school years. Annals of Dyslexia, 53, 218–253.

    Google Scholar 

  • Mazzocco, M. M., & Räsänen, P. (2013). Contributions of longitudinal studies to evolving definitions and knowledge of developmental dyscalculia. Trends in Neuroscience and Education, 2(2), 65–73.

    Google Scholar 

  • Michayluk, J. O., & Saklofske, D. H. (1988). Logo and special education. Canadian Journal of Special Education, 4(1), 43–48.

    Google Scholar 

  • MIUR. (2011a). Dislessia, Gelmini presenta misure a favore di studenti con disturbi specifici di apprendimento (DSA) per scuola e università. Pubblicato online http://hubmiur.pubblica.istruzione.it/web/ministero/cs200711

  • MIUR. (2011b). Studenti con disturbi specifici dell’apprendimento. Rilevazioni integrative a.s. 2010–2011. Pubblicato online http://hubmiur.pubblica.istruzione.it/web/istruzione/prot5140_10

  • Mulligan, J. T., & Mitchelmore, M. C. (2013). Early awareness of mathematical pattern and structure. In L. English & J. Mulligan (Eds.), Reconceptualizing early mathematics learning (pp. 29–46). Dordrecht: Springer Science-Business Media.

    Chapter  Google Scholar 

  • Mussolin, C. (2009). When [5] looks like [6]: A deficit of the number magnitude representation in developmental dyscalculia: behavioural and brain-imaging investigation. Retrieved from http://dial.academielouvain.be/handle/boreal:21432

  • Nemirovsky, R. (2003). Three conjectures concerning the relationship between body activity and understanding mathematics. In N. A. Pateman, B. J. Dougherty, & J. T. Zilliox (Eds.), Proc. 27th Conf. of the Int. Group for the Psychology of Mathematics Education 1 (pp. 103–135). Honolulu, Hawai’I: PME.

    Google Scholar 

  • Nemirovsky, R., Rasmussen, C., Sweeney, G., & Wawro, M. (2012). When the classroom floor becomes the complex plane: Addition and multiplication as ways of bodily navigation. Journal of the Learning Sciences, 21(2), 287–323.

    Article  Google Scholar 

  • Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings: Learning Cultures and Computers. In Mathematics Education Library: Kluwer Academic Publichers.

    Book  Google Scholar 

  • Núñez, R., & Lakoff, G. (2005). The cognitive foundations of mathematics: The role of conceptual metaphor. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 109–125). New York, NY: Psychology Press.

    Google Scholar 

  • Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. NY: Basic Books.

    Google Scholar 

  • Passolunghi, M. C., & Siegel, L. S. (2004). Working memory and access to numerical information in children with disability in mathematics. Journal of Experimental Child Psychology, 88, 348–367.

    Article  Google Scholar 

  • Piaget, J., & Inhelder, B. (1967). The child’s conception of space. NY: W.W. Norton.

    Google Scholar 

  • Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D. Dehaene, S., & Zorzi, M., et al. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33–41.

    Google Scholar 

  • Pinel, P., Piazza, M., Le Bihan, D., & Dehaene, S. (2004). Distributed and overlapping cerebral representation of number, size, and luminance during comparative judgments. Neuron, 41(6), 983–993.

    Article  Google Scholar 

  • Radford, L. (2003). Gestures, speech, and the sprouting of signs: A semiotic-cultural approach to students’ types of generalization. Mathematical Thinking and Learning, 5(1), 37–70.

    Article  Google Scholar 

  • Radford, L. (2006). The anthropology of meaning. Educational Studies in Mathematics, 61, 39–65.

    Article  Google Scholar 

  • Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20, 110–122.

    Article  Google Scholar 

  • Ratcliff, C., & Anderson, S. E. (2011). Reviving the Turtle: Exploring the use of logo with students with mild disabilities. Computers in the Schools, 28(3), 241–255.

    Article  Google Scholar 

  • Resnick, L. B., Bill, V. L., Lesgold, S. B., & Leer, N. M. (1991). Thinking in arithmetic class. In B. Means, C. Chelemer, & M. S. Knapp (Eds.), Teaching advanced skills to at-risk students (pp. 27–53). SRI international.

    Google Scholar 

  • Riconscente, M. M. (2013). Results from a controlled study of the iPad fractions game Motion Math. Games and Culture, 8(4), 186–214.

    Article  Google Scholar 

  • Robotti, E. (2014). Dynamic representations for algebraic objects available in AlNuSet: How develop meanings of the notions involved in the equation solution. In C. Margolinas (Ed.), Task design in mathematics education. Proceedings of ICMI Study 22, 1 (pp. 101–110). Oxford: ICMI.

    Google Scholar 

  • Robotti, E. (2017). Designing innovative learning activities to face difficulties in algebra of dyscalculic students: Exploiting the functionalities of AlNuSet. In A. Baccaglini-Frank & A. Leung (Eds.), Digital Technologies in Designing Mathematics Education Tasks—Potential and pitfalls, (pp. 193–214). Springer.

    Google Scholar 

  • Robotti, E., & Ferrando, E. (2013). Difficulties in algebra: New educational approach by AlNuSet. In E. Faggiano, & A. Montone (Eds.), Proceedings of ICTMT11 (pp. 250–25). Italy: ICTMT.

    Google Scholar 

  • Robotti, E., Antonini, S., & Baccaglini-Frank, A. (2015). Coming to see fractions on the numberline. In Proceedings of the 9th Congress of European Research in Mathematics Education (CERME 9), Prague.

    Google Scholar 

  • Rourke, B. P., & Conway, J. A. (1997). Disabilities of arithmetic and mathematical reasoning: Perspectives from neurology and neuropsychology. Journal of Learning Disabilities, 30, 34–46. doi:10.1177/002221949703000103

    Article  Google Scholar 

  • Russell, S. J. (1986). But what are they learning? The dilemma of using microcomputers in special education. Learning Disability Quarterly, 9(2), 100–104.

    Article  Google Scholar 

  • Santi, G., & Baccaglini-Frank, A. (2015). Possible forms of generalization we can expect from students experiencing mathematical learning difficulties. PNA, Revista de Investigaciòn en Didàctica de la Matemàtica, 9(3), 217–243.

    Google Scholar 

  • Schmittau, J. (2011). The role of theoretical analysis in developing algebraic thinking: A Vygotskian perspective. In J. Cai & E. Knuth (Eds.), Early algebraization a global dialogue from multiple perspectives (pp. 71–86). Berlin: Springer.

    Google Scholar 

  • Seron, X., Pesenti, M., Noël, M. P., Deloche, G., & Cornet, J. A. (1992). Images of numbers or when 98 is upper left and 6 sky blue. Cognition, 44, 159–196.

    Article  Google Scholar 

  • Sfard, A., & Linchevsky, L. (1992). Equations and inequalities: Processes without objects? Proceedings PME XVI, Durham, 3, 136.

    Google Scholar 

  • Sinclair, N., & Pimm, D. (2014). Number’s subtle touch: Expanding finger gnosis in the era of multi-touch technologies. Proceedings of the PME 38 Conference, Vancouver, BC.

    Google Scholar 

  • Sinclair, N., & Zaskis, R. (in press). Everybody counts: Designing tasks for TouchCounts. In A. Leung, & A. Baccaglini-Frank (Eds.), Digital technologies in designing mathematics education tasks potential and pitfalls. Springer.

    Google Scholar 

  • Stella, G., & Grandi, L. (2011). Conoscere la dislessia e i DSA. Milano: Giunti Editore.

    Google Scholar 

  • Szucs, D., Devine, A., Soltesz, F., Nobes, A., & Gabriel, F. (2013). Developmental dyscalculia is related to visuospatial memory and inhibition impairment. Cortex, 49, 2674–2688.

    Article  Google Scholar 

  • Vamvakoussi, X., Dooren, W., & Verschaffel, L. (2013). Brief Report. Educated adults are still affected by intuitions about the effect of arithmetical operations: evidence from a reaction-time study. Educational Studies in Mathematics, 82(2), 323–330.

    Article  Google Scholar 

  • Vasu, E. S., & Tyler, D. K. (1997). A comparison of the critical thinking skills and spatial ability of fifth grade children using simulation software or Logo. Journal of Computing in Childhood Education, 8(4), 345–363.

    Google Scholar 

  • Verschaffel, L., & De Corte, E. (1996). Number and arithmetic. In A. J. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International handbook of mathematics education (pp. 99–137). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Watson, S. M. R., & Gable, R. A. (2013). Unraveling the complex nature of mathematics learning disability: Implications for research and practice. Learning Disability Quarterly, 36(3), 178–187.

    Article  Google Scholar 

  • Wilson, A. J., Revkin, S. K., Cohen, D., Cohen, A. S., & Dehaene, S. (2006a). An Open Trial Assessment of “The Number Race”, an adaptive computer game for remediation of dyscalculia. Behav Brain Functions, 2(20), 1–16. doi:10.1186/1744-9081-2-20

    Google Scholar 

  • Wilson, A. J., Dehaene, S., Pinel, P., Revkin, S. K., Cohen, L., & Cohen, D. (2006b). Principles underlying the design of “The Number Race”, an adaptive computer game for remediation of dyscalculia. Behavioral and Brain Functions, 2(1), 19. doi:10.1186/1744-9081-2-19

    Article  Google Scholar 

  • Zorzi, M., Priftis, K., & Umiltà, C. (2002). Brain damage: Neglect disrupts the mental number line. Nature, 417(6885), 138–139.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Robotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Robotti, E., Baccaglini-Frank, A. (2017). Using Digital Environments to Address Students’ Mathematical Learning Difficulties. In: Faggiano, E., Ferrara, F., Montone, A. (eds) Innovation and Technology Enhancing Mathematics Education. Mathematics Education in the Digital Era, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-61488-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61488-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61487-8

  • Online ISBN: 978-3-319-61488-5

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics