Digital Mazes and Spatial Reasoning: Using Colour and Movement to Explore the 4th Dimension

  • Elizabeth de FreitasEmail author
Part of the Mathematics Education in the Digital Era book series (MEDE, volume 9)


This chapter focuses on innovative developments of four-dimensional digital mazes, examining how these mazes tap into the ideas of mathematician and fiction writer Charles Hinton (1853–1907) who wrote extensively on perception of a 4th geometric dimension. Hinton treats mathematical objects as physical and material movements, and draws on non-Euclidean geometry to argue for a virtual dimension to matter. I discuss recent attempts to build digital mazes that develop spatial sense in four dimensions, and show how these are directly linked to Hinton’s ideas. I focus on how colour and movement in digital environments are used to develop a distinctive kind of spatial sense. This chapter sheds light on innovative uses of digital software for developing student spatial sense. My aim is to explicate the new materialism of Charles Hinton, contribute to discussions about the nature of spatial sense and spatial reasoning, and to point to possible directions for future research on inventive approaches to geometry.


  1. Aflolo, T. N., & Graziano, M. S. A. (2008). Four dimensional spatial reasoning in humans. Journal of Experimental Psychology: Human Perception and Performance, 34(5), 1066–1077.Google Scholar
  2. Bell, J. L. (2014). Continuity and infinitesimals. Stanford Encyclopedia of Philosophy. Available at
  3. Bergson, H. (1903/1999). Introduction á la métaphysique. (T. E. Hulme: An Introduction to Metaphysics, Trans.). Indianapolis, IN: Hackett Publishing Company, 1999.Google Scholar
  4. Bergson, H. (1896/1988). Matie`re et me´moire. (N. M. Paul & W. S. Palmer: Matter and Memory, Trans.). New York, NY: Zone Books, 1988.Google Scholar
  5. Biegler, R. (2000). Possible use of path integration in animal navigation. Animal Learning and Behavior, 28, 257–277.CrossRefGoogle Scholar
  6. Châtelet, G. (1993/2000). Les enjeux du mobile. (R. Shore & M. Zagha: Figuring space: Philosophy, mathematics and physics, Trans.). Dordrecht, The Netherlands: Kluwer Academy Press, 2000.Google Scholar
  7. Coole, D., & Frost, S. (2010). New materialism: Ontology, agency and politics. Durham, NC: Duke University Press.Google Scholar
  8. Cutting, J. E. (1997). How the eye measures reality and virtual reality. Behavior research methods, instruments and computers, 29(1), 27–36.CrossRefGoogle Scholar
  9. Cutting, J. E., Vishton, P. M., & Braren, P. A. (1995). How we avoid collisions with stationary and moving obstacles. Psychological Review, 102(4), 627–651.CrossRefGoogle Scholar
  10. de Freitas, E., & Sinclair, N. (2014). Mathematics and the body: Material entanglements in the classroom. Cambridge: Cambridge University Press.Google Scholar
  11. de Freitas, E., & Ferrara, F. (2015). Movement, memory, and mathematics: Henri Bergson and the ontology of learning. Studies in Philosophy of Education, 33(6), 565–585.CrossRefGoogle Scholar
  12. Deleuze, G. (1989). Cinema 2: The time image (H. Tomlinson and R. Galeta, Trans.). Minneapolis, MN: The Athlone Press.Google Scholar
  13. Deleuze, G. (2003). Francis Bacon: The logic of sensation. (D. Smith, Trans.). Minneapolis: University of Minnesota Press.Google Scholar
  14. De Witt, A. (2013). Moral authority, men of science, and the Victorian novel (p. 173), Cambridge: Cambridge University Press. ISBN 1107036178.Google Scholar
  15. Easton, R. D., & Sholl, M. J. (1995). Object-array structure, frames of reference, and retrieval of spatial knowledge. Journal of Experimental Psychology. Learning, Memory, and Cognition, 21, 483–500.CrossRefGoogle Scholar
  16. Farrell, M. J., & Thomson, J. A. (1998). Automatic spatial updating during locomotion without vision. Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 51(A), 637–654.Google Scholar
  17. Hinton, C. H. (1902). The recognition of the fourth dimension. Bulletin of the philosophical society of Washington (Vol. #14). Reprinted in Speculations on the fourth dimension: Selected writings of Charles H. Hinton. Ed. R.V.B. Rucker. (1980). New York: Dover Publications, pp. 142–162.Google Scholar
  18. Hinton, C. H. (1904). The fourth dimension. Reprinted in Speculations on the fourth dimension: Selected writings of Charles H. Hinton. Ed. R.V.B. Rucker. (1980). New York: Dover Publications, pp. 120–141.Google Scholar
  19. Hinton, C. H. (1888). A new era of thought. Reprinted in Speculations on the fourth dimension: Selected writings of Charles H. Hinton. Ed. R.V.B. Rucker. (1980). New York: Dover Publications, pp. 106–119.Google Scholar
  20. Hinton, C. H. (1884). Scientific Romances (vol. 1). Reprinted in Speculations on the fourth dimension: Selected writings of Charles H. Hinton. Ed. R.V.B. Rucker. (1980). New York: Dover Publications, pp. 1–66Google Scholar
  21. Kinache, B. M. (2012). Fostering spatial sense vs. metric understanding in geometry. The mathematics teacher, 105(7), 534–540.Google Scholar
  22. May, M., & Klatzky, R. L. (2000). Path integration while ignoring irrelevant movement. Journal of Experimental Psychology. Learning, Memory, and Cognition, 26, 169–186.CrossRefGoogle Scholar
  23. Newcombe, N. S., & Huttenlochner, J. (2000). Making space: The development of spatial representations and reasoning. Cambridge, MA: MIT Press.Google Scholar
  24. Plotnitsky, A. (2012). Adventures of the diagonal: Non-euclidean mathematics and narrative. In A. Doxiadis & B. Mazur (Eds.), Circles disturbed: The interplay of mathematics and narrative (pp. 407–446). Princeton, New Jersey: Princeton University Press.Google Scholar
  25. Presson, C. C., & Montello, D. R. (1994). Updating after rotational and translational body movements: Coordinate structure of perspective space. Perception, 23, 1447–1455.CrossRefGoogle Scholar
  26. Rush, F. (2009). On architecture. New York: Routledge.Google Scholar
  27. Seyranian, G., Colantoni, P., & D’Zmura, M. (1999). Navigation in environments with four spatial dimensions. Perception, 28 (Suppl. 7).Google Scholar
  28. Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817–835.CrossRefGoogle Scholar
  29. Weeks, J. (2016). 4D mazes. Available at
  30. Wehner, R., Michel, B., & Antonsen, P. (1996). Visual navigation in insects: Coupling of egocentric and geocentric information. Journal of Experimental Biology, 199, 129–140.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Education and Social Research InstituteManchester Metropolitan UniversityManchesterUK

Personalised recommendations