Poincaré Maps and Nonautonomous Systems in the Plane

  • Stephen LynchEmail author


To compare periodic and quasiperiodic behavior.


  1. [1]
    S.S. Abdullaev, Construction of Mappings for Hamiltonian Systems and their Applications (Lecture Notes in Physics), Springer-Verlag, New York, 2006.Google Scholar
  2. [2]
    C-ODE-E (Consortium for ODE Experiments), ODE Architect: The Ultimate ODE Power Tool, John Wiley, New York, 1999.Google Scholar
  3. [3]
    E.S. Cheb-Terrab and H. P. de Oliveira, Poincaré sections of Hamiltonian systems, Comput. Phys. Comm., 95 (1996), 171.Google Scholar
  4. [4]
    P. Galison, Einstein’s Clocks and Poincaré’s Maps, W.W. Norton and Company, London, 2004.Google Scholar
  5. [5]
    J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 3rd ed., Springer-Verlag, New York, 1990.Google Scholar
  6. [6]
    J. Llibre and A.E. Teruel, Introduction to the Qualitative Theory of Differential Systems: Planar, Symmetric and Continuous Piecewise Linear Systems, Birkhäuser, Boston, 2013.Google Scholar
  7. [7]
    F.C. Moon and P.J. Holmes, A magnetoelastic strange attractor, Journal of Sound and Vibration, 65 (1979), 276–296.Google Scholar
  8. [8]
    M. Pettini, Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics (Interdisciplinary Applied Mathematics), Springer-Verlag, New York, 2007.Google Scholar
  9. [9]
    P. Pokorny, I. Schreiber and M. Marek, On the route to strangeness without chaos in the quasiperiodically forced van der Pol oscillator, Chaos, Solitons and Fractals 7 (1996), 409–424.Google Scholar
  10. [10]
    H. Poincaré, Mémoire sur les courbes définies par une equation différentielle, J. Math., 7 (1881), 375–422; Oeuvre, Gauthier-Villars, Paris, 1890.Google Scholar
  11. [11]
    S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747–817.Google Scholar
  12. [12]
    L.M. Surhone (Editor), M.T. Timpledon (Editor), S.F. Marseken (Editor), Poincaré Map: Mathematics, Dynamical System, Henri Poincaré, Orbit, State Space, Dynamical System, Transversality, Flow, Recurrence Plot, Apsis, Betascript Publishers, 2010.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Computing, Mathematics and Digital TechnologyManchester Metropolitan UniversityManchesterUK

Personalised recommendations